

Lecture Notes in Computer Science 5247
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Peter Forbrig Fabio Paternò (Eds.)

Engineering
Interactive Systems 2008

Second Conference on
Human-Centered Software Engineering, HCSE 2008 and
7th International Workshop on
Task Models and Diagrams, TAMODIA 2008
Pisa, Italy, September 25-26, 2008
Proceedings

13

Volume Editors

Peter Forbrig
University of Rostock, Department of Computer Science
Albert-Einstein-Str. 21, 18051 Rostock, Germany
E-mail: peter.forbrig@uni-rostock.de

Fabio Paternò
ISTI-CNR
Via G. Moruzzi 1, 56124 Pisa, Italy
E-mail: fabio.paterno@isti.cnr.it

Library of Congress Control Number: 2008935025

CR Subject Classification (1998): H.5.2, H.5, D.2, D.3, F.3, I.6, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-85991-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85991-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12513901 06/3180 5 4 3 2 1 0

Preface

Engineering Interactive Systems (EIS) 2008 was an international event combining
the 2nd working conference on Human-Centred Software Engineering (HCSE 2008)
and the 7th International Workshop on TAsk MOdels and DIAgrams (TAMODIA
2008).

HCSE is a working conference that brings together researchers and practitioners in-
terested in strengthening the scientific foundations of user interface design and
examining the relationship between software engineering and human-computer
interaction and how to strengthen user-centred design as an essential part of soft-
ware engineering processes. As a working conference, substantial time is devoted to
the open and lively discussion of papers. TAMODIA is an international workshop
on models, such as task models and visual representations in Human-Computer
Interaction (one of the most widely used notations in this area, ConcurTaskTrees,
was developed in the town that hosted this year’s event). It focuses on notations
used to describe user tasks ranging from textual and graphical forms to interactive,
multimodal and multimedia tools.

The pervasiveness of software applications requires user interfaces able to support
a wide variety of tasks, in a wide variety of contexts, and accessible through many
possible devices. The user interface component of interactive applications is acquiring
ever more importance. This is because, often, many different applications are avail-
able to perform similar tasks and users choose those that are easier to understand and
interact with and that, consequently, increase efficiency, productivity, and acceptance
while reducing errors and the need for training. As designers of tomorrow’s technol-
ogy, we have the responsibility of creating interactive software systems that permit
better user experience, so that users may enjoy more satisfying experiences with in-
formation and communication technologies. This need has brought about new research
areas, such as ambient intelligence, natural interaction, end user development, and
social interaction.

The response to the conference was positive in terms of submissions and participa-
tion. We received around 60 contributions from 20 countries located on 5 conti-
nents. We selected for the final programme 7 full papers and 6 short papers for
TAMODIA and 3 full papers and 11 short papers for HCSE, as well as 3 interesting
demos. The result is a set of interesting and stimulating papers that address such
important issues as task models and interaction, user interfaces for ubiquitous sys-
tems, multi-device user interfaces, automated usability evaluation, human-centred
design, and intelligent user interfaces. The final programme of the event also in-
cluded one technical invited speaker: Alan Dix from the University of Lancaster on
CHANGE: Getting Things Done and Helping Get Things Done: Automated Task
Support.

In general, the continuous development of new research topics in the human-
computer interaction area shows how the field is able to dynamically evolve and ad-
dress both new and old challenges. All the results obtained are never an arrival point

 Preface

VI

but they are the basis for new research and results, and we hope that Engineering
Interactive Systems 2008 can contribute to this process.

July 2008 Peter Forbrig
Fabio Paternò

Organization

International Programme Committee

Chairs Peter Forbrig, University of Rostock, and
 Fabio Paternò, ISTI-CNR, Italy

Members for HCSE 2008

Simone D. J. Barbosa Informatics Department, PUC-Rio, Brazil
Rémi Bastide LIIHS - IRIT - Université Toulouse 1, France
David Benyon Napier University, Edinburgh, UK
Regina Bernhaupt Universität Salzburg, Austria
Ann Blandford University College London, UK
Gaelle Calvary CLIPS-IMAG, France
José C. Campos DI/CCTC, Universidade do Minho, Portugal
Stéphane Chatty ENAC, IntuiLab, France
Anke Dittmar University of Rostock, Germany
Gavin Doherty Department of Computer Science, Trinity College

Dublin, Ireland
Xavier Ferre Universidad Politecnica de Madrid, Spain
Peter Forbrig University of Rostock, Germany
Nicholas Graham School of Computing, Queen's University,

Canada
Jan Gulliksen Uppsala University, Sweden
Judy Hammond University of Technology, Sydney, Australia
Morten Borup Harning Dialogical ApS/Priway ApS, Denmark
Michael Harrison University of Newcastle upon Tyne, UK
Joaquim Jorge INESC-ID, Technical University of Lisbon,

Portugal
Rick Kazman University of Hawaii, SEI/CMU, USA
Kris Luyten Hasselt University, Expertise Centre for Digital

Media, Belgium
Eduard Metzker DaimlerChrysler Research and Technology,

Germany
Tom Moher University of Illinois at Chicago, USA
Philippe Palanque IRIT, Université Toulouse 3, France
Oscar Pastor Valencia University of Technology, Spain
Fabio Paternò ISTI-CNR, Italy
Matthias Rauterberg Industrial Design Department, Technical

University Eindhoven, The Netherlands

 Organization VIII

Carmen Santoro ISTI-CNR, Italy
Daniel Sinnig Concordia University Montreal, Canada
Constantine Stephanidis University of Crete and FORTH-ICS, Greece
Gerrit van der Veer Vrije Universiteit, Amsterdam, The Netherlands
Janet Wesson Nelson Mandela Metropolitan University, Port

Elizabeth, South Africa
Marco Winckler LIIHS-IRIT, France
Thomas Ziegert SAP Research CEC Darmstadt, Germany

Members for Tamodia 2008

Sandrine Balbo University of Melbourne, Australia
Rémi Bastide University Toulouse 1, France
Birgit Bomsdorf University of Hagen, Germany
Gaëlle Calvary University of Grenoble I, France
Karin Coninx Hasselt University, Belgium
Anke Ditmar University of Rostock, Germany
Alan Dix Lancaster University, UK
Peter Forbrig University of Rostock, Germany
María-Dolores Lozano Universidad de Castilla-La Mancha, Spain
Kris Luyten Hasselt University, Belgium
Philippe Palanque University Paul Sabatier, France
Fabio Paternò ISTI-CNR, Italy
Costin Pribeanu ICI Bucuresti, Romania
Matthias Rauterberg Eindhoven University of Technology,

The Netherlands
Carmen Santoro ISTI-CNR, Italy
Corina Sas Lancaster University, UK
Dominique Scapin INRIA, France
Pavel Slavík Czech Technical University in Prague,

Czech Republic
Christian Stary University of Linz, Austria
Constantine Stephanidis University of Crete and FORTH-ICS, Greece
Markus Stolze IBM, USA
Hallvard Trætteberg University of Trondheim, Norway
Jean Vanderdonckt UCL, Belgium
Gerrit Van der Veer Vrije Universiteit, The Netherlands
Peter Wild University of Cambridge, UK
Marco Winckler University Paul Sabatier, France

Table of Contents

Keynote

Tasks = Data + Action + Context: Automated Task Assistance
through Data-Oriented Analysis . 1

Alan Dix

TAMODIA Long Papers

Assessment of Object Use for Task Modeling . 14
Sybille Caffiau, Patrick Girard, Dominique L. Scapin,
Laurent Guittet, and Loe Sanou

Task Model-Based Usability Evaluation for Smart Environments 29
Stefan Propp, Gregor Buchholz, and Peter Forbrig

From Task to Agent-Oriented Meta-models, and Back Again 41
Steve Goschnick, Sandrine Balbo, and Liz Sonenberg

Steps in Identifying Interaction Design Patterns for Multimodal
Systems . 58

Andreas Ratzka

Information Supply Mechanisms in Ubiquitous Computing, Crisis
Management and Workflow Modelling . 72

Jurriaan van Diggelen, Robbert-Jan Beun, Rogier M. van Eijk, and
Peter J. Werkhoven

A Method for Modeling Interactions on Task Representations in
Business Task Management Systems . 84

Todor Stoitsev and Stefan Scheidl

AMBOSS: A Task Modeling Approach for Safety-Critical Systems 98
Matthias Giese, Tomasz Mistrzyk, Andreas Pfau, Gerd Szwillus, and
Michael von Detten

TAMODIA Short Papers

UI Design without a Task Modeling Language – Using BPMN and
Diamodl for Task Modeling and Dialog Design . 110

Hallvard Trætteberg

Task-Based Development Methodology for Collaborative
Environments . 118

Maik Wurdel, Daniel Sinnig, and Peter Forbrig

X Table of Contents

An Event-Condition-Action Approach for Contextual Interaction in
Virtual Environments . 126

Lode Vanacken, Joan De Boeck, Chris Raymaekers, and
Karin Coninx

Automated Usability Evaluation during Model-Based Interactive
System Development . 134

Sebastian Feuerstack, Marco Blumendorf, Maximilian Kern,
Michael Kruppa, Michael Quade, Mathias Runge, and Sahin Albayrak

Integrating Groupware Notations with UML . 142
William J. Giraldo, Ana I. Molina, Manuel Ortega, and
Cesar A. Collazos

HCSE Long Papers

MuiCSer: A Process Framework for Multi-disciplinary User-Centred
Software Engineering Processes . 150

Mieke Haesen, Karin Coninx, Jan Van den Bergh, and Kris Luyten

A Fluid Flow Approach to Usability Analysis of Multi-user Systems 166
Mieke Massink, Diego Latella, Maurice H. ter Beek,
Michael D. Harrison, and Michele Loreti

Task-Driven Plasticity: One Step Forward with UbiDraw 181
Jean Vanderdonckt and Juan Manuel Gonzalez Calleros

HCSE Short Papers

The Guilet Dialog Model and Dialog Core for Graphical User
Interfaces . 197

Jürgen Rückert and Barbara Paech

An Ontology-Based Adaptation Framework for Multimodal Interactive
Systems . 205

Matthias Bezold

Some Thoughts about the Horizontal Development of Software
Engineers . 213

Anke Dittmar and Peter Forbrig

Involving End Users in Distributed Requirements Engineering 221
Steffen Lohmann, Jürgen Ziegler, and Philipp Heim

Concepts for Analysis and Design of Mobile Healthcare Applications . . . 229
Joseph McKnight, Gavin Doherty, Bridget Kane, and Saturnino Luz

ShaMAN: An Agent Meta-model for Computer Games 237
Steve Goschnick, Sandrine Balbo, and Liz Sonenberg

Table of Contents XI

A Study on Appropriate Plant Diagram Synthesis for User-Suited HMI
in Operating Control . 246

Mieczyslaw Metzger and Grzegorz Polaków

Preserving Rich User Interface State in Web Applications across
Various Platforms . 255

Fabio Paternò, Carmen Santoro, and Antonio Scorcia

From Desktop to Tabletop: Migrating the User Interface of
AgilePlanner . 263

Xin Wang, Yaser Ghanam, and Frank Maurer

Learning Key Contexts of Use in the Wild for Driving Plastic User
Interfaces Engineering . 271

Vincent Ganneau, Gaëlle Calvary, and Rachel Demumieux

The Ecology of Participants in Co-evolving Socio-technical
Environments . 279

Gerhard Fischer, Antonio Piccinno, and Yunwen Ye

Demonstrations

User Interface Migration between Mobile Devices and Digital TV 287
Fabio Paternò, Carmen Santoro, and Antonio Scorcia

Demonstration of Software Components for End-User Development 293
Mario Gleichmann, Thomas Hasart, Ilvio Bruder,
Andreas Heuer, and Peter Forbrig

Transactions in Task Models . 299
Daniel Reichart and Peter Forbrig

Author Index . 305

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 1–13, 2008.
© IFIP International Federation for Information Processing 2008

Tasks = Data + Action + Context:
Automated Task Assistance through Data-Oriented

Analysis

Alan Dix

Computing Department, InfoLab21, Lancaster University
Lancaster, LA1 4WA, UK
alan@hcibook.com

http://www.hcibook.com/alan/papers/EIS-Tamodia2008/

Abstract. Human activity unfolds partly through planning and learnt sequences
of actions, and partly through reaction to the physical objects and digital data in
the environment. This paper describes various techniques related to automatic
task assistance that take this role of data as central. Although this brings addi-
tional complexity, it also offers ways to simplify or bypass problems in task in-
ference that otherwise appear difficult or impossible. Although the focus in this
paper is on automated task support, the importance of objects and data in under-
standing tasks is one that applies to other forms of task analysis in the design
process.

Keywords: task inference, data detectors, automated task support, intelligent
user interfaces, task as grammar.

1 Introduction

One morning recently, whilst having breakfast, I served a bowl of grapefruit segments
and then went to make my tea. While making the tea I went to the fridge to get a pint
of milk, but after getting the milk from the fridge I only just stopped myself in time as
I was about to pour the milk onto my grapefruit! I am sure everyone reading this has
made a similar mistake, but it is not just an amusing anecdote; the analysis of such
mistakes is the grist of human error analysis and equally tells us critical things about
even error-free tasks.

Note that not all mistakes are equally likely: I would be unlikely to pour the milk
onto the bare kitchen worktop or onto a plate of bacon and eggs. This is a form of
capture error: the bowl containing the grapefruit might on other occasions hold corn-
flakes; when that is the case and I am standing in the kitchen with milk in my hand,
having just got it out of the fridge, it would be quite appropriate to pour the milk into
the bowl.

In all but the most repetitive, routinised, or organisationally prescribed settings, the
actual evolution of the goal into human activity is far more complex and situated then
we can easily capture in simple task-hierarchies and plans. Real activity involves
procedural, reactive and consciously considered actions and for over 20 years, many

2 A. Dix

Fig. 1. Making a mug of tea (sorry no teapot)

in HCI have argued that the complexity of ‘situated action’ renders more formal task
or goal analysis incorrect, obsolete and irrelevant. In contrast, in my keynote at the
first Tamodia in 2002, I discussed how some of these more contextual or situational
elements could be drawn into a formal task model: the role of information, other peo-
ple, physical artefacts, triggers for action, and placeholders keeping track of where we
are in a task [1].

This subtle complexity of real human activity is difficult for a human analyst to
adequately describe in more formal terms; even when that formalisation is properly
understood to be partial and provisional. However, this is far worse when the ‘ana-
lyst’ is a machine! As a human analyst we can ask what is going on in a user’s head,
but automated analysis typically has only the trace of user actions available and no
real understanding of human activity and purpose.

Over the years I have intermittently worked on aspects of task inference and auto-
mated support of user activity. In this paper I will reflect on the relation of this to
more human task analysis and the way they inform one another. Many of the tech-
niques described are being worked on together with colleagues at Lancaster, Univer-
sity of Rome "La Sapienza”, University of Athens, University of Peloponnese and
Universidad Autonoma de Madrid. I will mention other names explicitly in the paper,
but in other places when I say “we”, this refers to joint work with various colleagues
in this group.

2 The Best Laid Plans and Reactions

We’ll start by looking in a little more detail at the milk in the grapefruit error. Figure
1 shows a HTA of the task of making a mug of tea. It is subtask 4 that is interesting.
It has two further subtasks and one would normally write a plan such as:

Plan 4.

if milk not out do 4.1
then do 4.2

 Tasks = Data + Action + Context: Automated Task Assistance 3

However, maybe it is more like:

Plan 4.
if milk not out do 4.1
when milk in hand do 4.2

The capture error is then understandable as the “eat some cereal” task will also

have a plan with something like “when milk is in hand pour into bowl”.
The first version of the plan is really a ‘planned’ plan, or maybe a proceduralised

one, where the sequence of actions is in some way explicitly or implicitly remem-
bered. However, the second is effectively a stimulus–response reaction based on con-
ditions in the environment – the sequenced and hierarchical structure will still be
there, but are maintained because it unfolds as the human actions interact with the
environment, not because the order is remembered. Furthermore, the user may even
be performing some form of explicit means-end analysis “in order to add milk I need
a bottle of milk”, … “in order to get a bottle of milk I need to open the fridge”.

We can arrange these types of sequenced activity by whether they are explicit or
implicit and whether they are pre-planned or environment-driven:

 pre-planned environment-driven

explicit (a) following known plan
of action

(b) means–end analysis

implicit (c) proceduralised
or routine actions

(d) stimulus–response
reaction

From watching a user we often cannot tell which of these is the reason for a par-

ticular sequence of observed actions. While these are very different in terms of cogni-
tive activity, they are virtually indistinguishable from behaviour alone.

Now we might assume that a well-practiced user will learn frequently repeated
tasks: that is, even if the user starts off with an explicit plan (a) or are means-end
driven (b), they will eventually end up with proceduralised or routine actions (c) –
practice makes perfect. Certainly this is true of repeated actions in sports and music.

However, theorists advocating strong ideas of the embodied mind would argue that
we are creatures fitted most well to a perception–action cycle and where possible are
parsimonious with mental representations allowing the environment to encode as
much as possible.

“In general evolved creatures will neither store nor process information
in costly ways when they can use the structure of the environment and
their operations on it as a convenient stand-in for the information-
processing operations concerned.” ([2] as quoted in [3])

Clark calls this the “007 principle” as it can be summarised as: “know only as much
as you need to know to get the job done” [3].

4 A. Dix

In the natural world this means, for example, that we do not need to remember
what the weather is like now as we can feel the wind on our cheeks or the rain on our
hands. In a more complex setting this can include changes made to the world (e.g. the
bowl on the worktop) and even changes made precisely for the reason of offloading
information processing or memory (e.g. ticking off the shopping list). Indeed this is
one of the main foci of distributed cognition accounts of activity [4].

It is not necessary to take a strong embodied mind or even distributed cognition
viewpoint to see that this parsimony is a normal aspect of human behaviour – why
bother to remember the precise order of doing things to make my mug of tea when it
is obvious what to do when I have milk in my hand and black tea in the mug?

Of curse parsimony of internal representation does not mean no internal representa-
tion. The story of the grapefruit bowl would be less amusing of it happened all the
time. While eating breakfast it is not unusual for me to have both a grapefruit bowl
and a mug of tea out at the same time – so why don’t I make the same mistake every
morning? In fact I do have some idea of what follows what (plan) and also have some
idea that I am “in the middle of making my tea” (context, schema).

Together these factors: environment, plans, context inform the actions we perform
in the world.

We will look at each of these factors and how they impact automatic inference and
support of users’ tasks.

3 Environment – Data Driven Interaction

In ubiquitous computing, the instrumentation of the environment is a major issue in
itself and so inferring user behaviour from the environment is very difficult. In con-
trast, in the purely digital world of the desktop or web, we have, in principle, rela-
tively easy access to the complete digital environment. This makes certain forms of
data-driven interaction particularly easy.

One form of this are “data detectors”, which usually use some form of textual
analysis to identify potential key terms, dates, etc. in small bodies of text such as
email messages, or your current selection. The initial work on data detectors occurred
in the late 1990’s when there were a number of other data detector projects at Intel
(SRA) [5], Apple [6] and Georgia Tech (CyberDesk) [7]. The Apple work led to the
inclusion of Apple Data Detectors in the operating systems (and still there albeit often
unused). When activated (and when using a compliant application) small contextual
menus appear over selected words/phrases in the text of the current document
or email.

At around the same time I was involved in the development of onCue [8], a small
“intelligent” toolbar. This sat at the side of the screen and watched for changes to the
clipboard (through copy-paste); when the clipboard changed, onCue would alter its
icons to suggest additional things that the user might like to do with the clipboard
contents. For example, if the user selected a person’s name various web-based direc-
tories would be suggested, if instead a table of numbers were selected, graphs and
spreadsheet options would be suggested.

The internal architecture of onCue consisted of two main kinds of components,
recognisers and services, linked by a blackboard-like infrastructure. The recognisers

 Tasks = Data + Action + Context: Automated Task Assistance 5

examined the clipboard contents to see if they were a recognised type (post-code,
name, table, etc.). The services instead responded to data of particular types (e.g.
single word for dictionary, post code for mapping web site) and were activated when
clipboard contents were recognised to be that type. This separation (itself building on
CyberDesk [7]) was an important difference from most other systems where the two
were linked as it meant that services could easily be added for previously recognised
types adding to the potential for third party additions (through small XML “Qbits”).

OnCue used the clipboard as its focus as the clipboard is usually the only truly ap-
plication-independent source of data on a GUI platform. Ideally onCue would have
fitted more closely into applications, but this is hard without per-application coding,
even Apple found this despite controlling the platform! For exactly the same reasons,
Citrine, another recent application in the data-detector tradition, is based purely on
intelligent clipboard-to-clipboard interactions, offering intelligent transformations
between types of clipboard content [9].

Citrine is part of a recent small resurgence in work on data detectors, including
headlines a few years ago due to disputes about Microsoft SmartTags. Yahoo! also
have ways for web developers to include context-sensitive searches into their web
pages keyed on phrases in the page contents, and Amazon have recently announced a
similar mechanism to link to books and other products. More interesting compared
with these more hand-crafted links is the CREO system [10]. CREO takes several
large ontologies of general knowledge and uses these to build indices of critical words
and phrases. As the user browses the web a plug-in looks for matching words in the
web pages visited and adds contextual links to web based interactions concerning
the topic of the words. The information for this is also used to allow the user to train
the systems to do new actions by example.

The mode of operation of CREO is reminiscent of an older body of work that
started over 15 years earlier in the HyperText community, where notions of external
linkage were important. Microcosm [11] developed at Southampton pioneered the use
of automatic links. This used an index of key terms attached to a particular content.
When the user viewed a document any key terms present in the index became live
links in the document. Note that, with the exception of CREO, most of the data detec-
tors, including onCue, rely on largely syntactic/lexical matching using regular expres-
sions or other patterns whereas Microcosm was lexicon based.

Snip!t (www.snipit.org) is a web-based system allowing users to bookmark
sections of a web page rather than just the URL of the page itself [12]. It has been
developed intermittently over a period of about 5 years based on initial user studies of
bookmarking that showed that users want to be able to recall a portion of a page [13].
This is now more common in tools such as Google Notebook and various annotation
services such as Bricks [14] and MADCOW [15]. Snip!t inherits the recogniser–
service architectire of onCue but running server-side rather than on a user’s own ma-
chine. This allows it to access larger data sources, like Citrine and Microcosm, and so
it performs a mixture of lexicon look-up and syntactic recognizing of suitable types,
including hybrids. For example if a word matches one of the common names from a
US census dataset of first names, it triggers a full syntactic analysis to check whether
the surrounding text is really a name.

In many ways these data detector and related services are very much like a butler
who, seeing you in the kitchen holding a pint of milk and a mug of black tea, says

6 A. Dix

“would you like me to pour milk in your tea, sir?” However, the above systems all
have little if any adaptation to the user, so are like an absent-minded butler who al-
ways asks the same even though you never take milk in your tea.

In order to make this kind of data-detector more individual, in the TIM project we
are connecting this data detector technology with a personal ontology [16]. A personal
ontology is an explicit store of personal information such as friends, work colleagues,
projects, papers, and addresses, including the connections between them. There are
various usability issues relating to how one encourages a user to produce and maintain
such an ontology, but in general the process will be semi-automatic. The GNOWSIS
project [17] has found that by mining very explicit desktop data such as address
books, email messages etc. it is possible to build at least part of the data we would
want to see in such an ontology.

If one assumes that such a personal ontology exists, then the terms in the ontology
can be matched in text alongside public information sources such as gazetteers. So as
well as recognising that Pisa is a City, it will also recognise that “Fabio” is the first
name of an academic in my personal ontology and then be able to suggest things that
are appropriate for an academic such as looking him up in DBLP.

4 Context – What to Do and What to Do It to

Of course a human aide would not only know about you as an individual (such as
whether you like milk in your tea), but also know something about what is happening
to you now (such as making tea or making pancakes).

Context recognition and context awareness have become especially important in
ubiquitous and mobile computing where interactions with the world are central, but
also in purely digital domains such as adaptive hypertext, and e-learning. It may be
useful even in purely digital settings to know, for example, whether the user is
stressed or relaxed, with colleagues or on her own. However, this paper will focus on
context that can be inferred from the digital domain itself.

To do this, we take the personal ontology and then use spreading activation in or-
der to represent what are the ‘hot spots’ in the ontology at any particular moment
[18]. Spreading activation has its roots in cognitive psychology [19] and so has the
potential to model context in a way somewhat resembling a human. The basic idea is
that when an event or document refers to some entity in the ontology it becomes ‘ac-
tivated’ (say I have an email from Vivi, then the entity representing Vivi gets an
initial high activation). The algorithm then ‘spreads’ the activation by making entities
connected to Vivi a little activated, then those connected to these slightly less active
entities. There are problems, such as loops in the ontology, which can set up self-
reinforcing feedback, but these can be controlled with care in the detailed algorithms.

Now imagine I receive a second email that mentions “George”. I may know sev-
eral people called George, so on its own any form of digital assistant can at best sug-
gest it is one of a long list. However, with the spreading activation, the George who
is part of the same project and in the same country as Vivi will be ‘hotter; than others
and so be the first suggestion. Also if the next action I am performing requires a city
name, then an assistant can pre-complete the form with “Athens” as a suggestion as
this is the city that is most highly activated.

 Tasks = Data + Action + Context: Automated Task Assistance 7

Fig. 2. Spreading activation through a personal ontology

A related approach is being used to create declarative representations of the rela-
tionship between web form fields [20]. Whenever a user enters text into form fields an
automated system records the contents and then attempts to infer the relationship
between the fields. If the fields are completely unrecognised it can do nothing (al-
though this would be an appropriate point to suggest that the users store the data in
their personal ontology!) However, if several form fields are found in the personal
ontology, then an algorithm searches for ‘best’ paths between the fields.

There are typically several such paths hence the need for weighting. For example
“Lancaster University” is related to “Alan Dix” by being his institution, but also the
institution of Devina his work collegue. That is we have two possible paths:

(a) name_of / Person / member / Institution / has_name
(b) name_of / Person / colleague / Person / member / Institution / has_name

The system would give the first of these a higher weight because it is ‘shorter’
based on number of relationships traversed and their branching factors. Potentially,
this could also use the current activation to weight more highly paths through ‘hot’
entities.

Next time the user comes to the form, the system knows not only what data was
entered before (as in standard browser auto-completion), but also the relationship
between them in abstract terms. So if the user enters Antonella into the first field, the
system traverses path (a) and auto-completes the second field not with “Lancaster
University” (the last value entered), but with “University of Rome” as that is the name
of the institution that Antonella is a member of.

5 Sequence – From Traces to Plans

Performing a task leads to some observable trace of actions. This trace of real activity is
often the meeting point of different views of the world. Even if we disagree on interpre-
tations of events, we can often (although not always!) agree on what actually happened.

8 A. Dix

For this reason, in earlier work, I have referred to traces as a “ubiquitous semantics” for
different user interface formalisms from task analysis to system models [21].

One way to view an HTA is as a grammar over this trace of actions. Personally I
have found this a useful way to teach about task analysis, and have included this in
the teaching materials for the Human–Computer Interaction textbook (although not
yet in the actual text) [22,23]. As an illustration, figure 3 shows a simple HTA of
cleaning a house and figure 4 shows how this can be used to build a ‘parse tree’ of a
trace of actual actions (trace on the left, parse tree on the right). Note that unlike a
textual grammar, the task grammar includes interleaved activities (the instance of task
4 “empty the dust bag” in the middle of the execution of task 3 “clean the rooms”).

This can be applied to practical task analysis. In his thesis work, Stavros Asima-
kopoulos has used the “HTA as grammar” approach to supply chain forecasting [24].
Interviews with system developers and forecasters included accounts of actual fore-
casting activity (for the developers, envisaged; for the forecasters, from experience).
These (partial) activity sequences were then matched against a normative task analy-
sis based on the literature allowing an analysis of discrepancies between normative
and actual tasks.

This approach can be used inductively too, and indeed direct observation is one of
the normal sources for task analysis. As an analyst one is looking at a sequence of
actual actions and attempting to infer a hierarchical (or other) structure on those ac-
tions. To do this the analyst uses a combination of common sense, domain knowledge
and interaction with users in order to ascertain that, for example, putting money in a
slot is part of parking a car.

Fig. 3. HTA for cleaning a house (from [22]

Fig. 4. Parsing a trace using an HTA (from [23] and [24])

 Tasks = Data + Action + Context: Automated Task Assistance 9

For automated analysis this becomes far more complicated – I have been told that
the general problem of inferring a hierarchical grammar from a sequence is computa-
tionally hard (either NP or at least nk for some large ‘k’!). However, in practice things
are not quite as bad as this suggests. Indeed various forms of action/task inference
have been common in the literature with the heyday in the early 1990s. The most well
known example is Allan Cypher’s Eager [25], but there have been many such systems
using various algorithms including neural networks and hidden Markov models
[26,27,28]. In recent years certain (albeit limited) forms of task inference can be
found in commercial systems such as auto-completion of lists in Microsoft Office or
form auto-fill features in web browsers … but the former emphasises the need to put
any such ‘intelligent’ features within an appropriate interaction framework. (See “ap-
propriate intelligence” in [29], especially the principle that one should design
foremost for the times when the intelligence, inevitably, fails and make interaction
graceful at such times.).

In some cases data-focused interactions can give rise to emergent task sequencing:
if the output of a basic user action is some form of data, then this becomes the locus
for the next action, etc. However, data linkages can also be used to make the job of
inferring structure from tasks sequences easier.

One of the problems in inferring task structure from traces of user activity is that
we interleave different tasks. I may be writing a paper, but occasionally reading or
writing an email while I do so, or maybe taking a break to play a game of solitaire.
Email reading on its own is perhaps one of the most challenging domains as perforce
the mails arriving are related to different higher-level tasks and yet they typically get
read in arrival order not a task at a time.

This is similar to the case in the kitchen where I maybe alternating between making
tea, serving grapefruit and chatting to my wife. Although the milk is somewhat prob-
lematic, it is obvious that boiling the kettle is connected with making the tea because
the water from the kettle goes into the mug not the grapefruit bowl. That is the shared
physical objects in the environment can be used to establish links between low-level
actions.

We can do the same thing in the digital domain. If we keep track of what digital
objects are produced or used by different user actions then this creates a linkage be-
tween them. For example, if I copy a date from an event in my calendar and paste it
into a hotel booking form, I create an implicit link between the two actions.

If the user types the data, things become more difficult. For example, if the result
of a search produced “Miguel” and then I typed “Madrid” into a text box. However,
here the algorithm described at the end of the previous section again comes into play
and offers a way to establish potential relationships through the personal ontology.

Now, assuming we have these data links between low-level actions, we can start to
‘pull out the threads’ of tasks from the undifferentiated interleaved sequence of ac-
tions. This is a bit like finding one end of a string of pearls in a jewellery box and
gently pulling the whole string (see Fig. 5). In principle these data links could take
place days, weeks or months later and still be detectable.

10 A. Dix

Fig. 5. Pulling out task threads from interleaved user actions

Once this thread has been pulled out we have a task sequence that is not confused
by interleaved activities of other kinds and thus far more amenable to further analysis.
For example, if a sequence of low-level actions A, B, C is detected and action A is
later performed then the option of performing actions B ad C can be proposed. Fur-
thermore the fact that we have the data link between them means we can auto-
complete the parameters of the subsequent actions. Of course, given this sequence,
some of the more sophisticated inference techniques in the programming by example /
by demonstration literature can be used [28]. The crucial thing is that data linkage
turns what seems like a near impossible problem into a relatively simple one.

Of course nothing is as trivial as that and there are some complications. The task
thread is a data flow and so may not be a simple sequence, but instead DAG (directed
acyclic graph) with time-based total ordering. Also any inferred data linkages mean
that there is a level of uncertainty associated with the detection of threads, leading to
several potential task threads with some level of confidence associated with each.

In principle it would also be possible to infer a level of hierarchical structure, either
through the temporal structure, by looking for common sub-sequences of actions; or
through the data structure, by looking at branches in the DAG. However, this seems
an appropriate level to rely more strongly on the user. When a sequence of actions is
suggested an option can be “name it”. At this point, the task sequence is being used,
and so is an appropriate moment to request small (but optional) additional user effort.
If the user does this, it means that (i) the user has effectively agreed that these actions
form a meaningful task chunk which can then be treated as atomic in further inference
and (ii) the chunk has a meaningful name that can be used in future suggestions, or
even to share with others.

6 Discussion

A key theme in this paper has been the interplay between data and action. Taking this
seriously allows us to consider various forms of automated task support that would
otherwise seem difficult or impossible. This is not to say that we should adopt a
purely data-oriented view, but by that using data-focused analysis alongside ways to
capture or inference more sequential or structured plans, we both create more robust
inference and make the detection of structure easier. All of this is set within the

 Tasks = Data + Action + Context: Automated Task Assistance 11

context of interaction, some of which we can attempt to infer, and some, such as the
deeper intentions of the user, we need to defer to the user’s own decisions and control.
Indeed, as we saw especially in the final discussion of the preceding section, we are
likely to obtain more reliable results if we consider an ongoing dialogue of suggestion
and observation rather than a more ‘waterfall’ approach of observe, infer then auto-
mate. Furthermore, such inference processes could easily operate symbiotically
alongside more user-initiated scripting such as Apple Automator or Yahoo! Pipes,
further increasing user control whilst still offering rich assistance.

With the exception of task threading, the work described in this paper is mostly
implemented, but as distinct units, and we are working on bringing this together,
within a unified architecture. For various reasons intelligent and adaptive interfaces,
whilst continuing to have their strong advocates, got a bad name in the general HCI
community for many years. Some of this was due to factors that still need to be
treated with care: inappropriate choice of algorithms; the prevailing “user in control”
ethos of direct manipulation; and detailed design issues, not least the lack of ‘appro-
priate intelligence’ in that often software is designed well for the test cases where it
produced good results, but copes less well when the results are less clear. However,
some of the problems were simply due to the limited computational power available
15 years ago – intelligent algorithms are typically expensive algorithms. With each
PC one thousand times more powerful than during this early blossoming, and the raw
computational power in the internet rivalling a (single) human brain, the times seem
pregnant for more automated (but not autocratic!) assistance.

While the focus of the work described here is automated task assistance, broader
lessons for human analysis and task design also emerge. We started with a non-
automated, non-digital example of tea, milk and grapefruit. The focus on artefacts and
physical objects as part of the task is central to understanding the errors that occur;
and of course are also valuable for re-designing tasks and environments to prevent
those errors occurring. The artefact-focus has also proved very powerful in uncover-
ing long-term or complex tasks in the non-digital world [30]. Back in my keynote at
the first Tamodia, I emphasised the importance of explicitly including artefacts and
environment (both physical and digital) within task analysis. In this paper I have prin-
cipally shown how taking into account the world of data can help the computer to
predict, suggest and automate aspects of user tasks. If this can help the computer, it
can help people. While there are exceptions (e.g. [31,32]), many forms of task analy-
sis still portray the user’s plans as largely pre-ordained and un-reactive … effectively
a disembodied user thinking and acting without recourse to the world. If the role of
artefacts and data is fully represented in task analysis then this could lead to better
systems designs that make available prompts and external resources to users; so that
users’ own choices and actions become easier, less cognitively taxing and less error
prone: designing for the embodied user.

Acknowledgements

This paper is drawing on ongoing collaborative work with a number of people includ-
ing: Tiziana Catarci, Yannis Ioannidis, Azrina Kamaruddin, Akrivi Katifori, Giorgos
Lepouras, Nazihah Md.Aki, Estefanía Martín, Miguel Mora, Antonella Poggi, Devina

12 A. Dix

Ramduny-Ellis, and Costas Vassilakis. It was also supported by the EU funded
DELOS Network of Excellence on Digital Libraries.

For links to related work please see:
http://www.hcibook.com/alan/papers/EIS-Tamodia2008/

References

1. Dix, A.: Managing the Ecology of Interaction. In: Pribeanu, C., Vanderdonckt, J. (eds.)
Proceedings of Tamodia 2002 - First International Workshop on Task Models and User In-
terface Design, pp. 1–9. INFOREC Publishing House, Bucharest (2002)

2. Clark, A.: Microcognition,: Philosophy, Cognitive Science and Parallel Processing. MIT
Press, Cambridge (1989)

3. Clark, A.: Being There: Putting Brain, Body and the World Together Again. MIT Press,
Cambridge (1998)

4. Hollan, J., Hutchins, E., Kirsh, D.: Distributed Cognition: Towards a New Foundation for
Human–Computer Interaction Research. In: Carroll, J. (ed.) Human–Computer Interaction
in the New Millennium, ch. 4, pp. 75–94. Addison-Wesley Professional, Boston (2002)

5. Pandit, M., Kalbag, S.: The selection recognition agent: Instant access to relevant informa-
tion and operations. In: Proc. of Intelligent User Interfaces (IUI 1997), pp. 47–52. ACM
Press, New York (1997)

6. Nardi, B., Miller, J., Wright, D.: Collaborative, Programmable Intelligent Agents. Com-
munications of the ACM 41(3), 96–104 (1998)

7. Wood, A., Dey, A., Abowd, G.: Cyberdesk: Automated Integration of Desktop and Net-
work Services. In: Proc. of the Conference on Human Factors in Computing Systems (CHI
1997), pp. 552–553. ACM Press, New York (1997)

8. Dix, A., Beale, R., Wood, A.: Architectures to make Simple Visualisations using Simple
Systems. In: Proc. of. Advanced Visual Interfaces (AVI 2000), pp. 51–60. ACM Press,
New York (2000)

9. Stylos, J., Myers, B., Faulring, A.: Citrine: providing intelligent copy-and-paste. In: Proc.
of the 17th Symposium on User Interface Software and Technology (UIST 2004), pp. 185–
188. ACM Press, New York (2004)

10. Faaborg, A., Lieberman, H.: A Goal-Oriented Web Browser. In: Proc. of the Conference
on Human Factors in Computing Systems (CHI 2006), pp. 751–760. ACM Press, New
York (2006)

11. Hall, W., Davis, H., Hutchings, G.: Rethinking Hypermedia: The Microcosm Approach.
Kluwer Academic Publishers, Norwell (1996)

12. Dix, A., Catarci, T., Habegger, B., Ioannidis, Y., Kamaruddin, A., Katifori, A., Lepouras,
G., Poggi, A., Ramduny-Ellis, D.: Intelligent context-sensitive interactions on desktop and
the web. In: Proceedings of the international Workshop in Conjunction with AVI 2006 on
Context in Advanced Interfaces, pp. 23–27. ACM Press, New York (2006)

13. Dix, A., Marshall, J.: At the right time: when to sort web history and bookmarks. In: Proc.
of HCI International 2003, vol. 1, pp. 758–762 (2003)

14. Haslhofer, B., Hecht, R.: Joining the BRICKS Network - A Piece of Cake. In: The Interna-
tional EVA Conference (2005)

15. Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., Trinchese, R.: MADCOW: a
multimedia digital annotation system. In: MADCOW: a multimedia digital annotation sys-
tem. In Proceedings of the Working Conference on Advanced Visual interfaces, AVI 2004,
Gallipoli, Italy, May 25 - 28, 2004, pp. 55–62. ACM, New York (2004)

 Tasks = Data + Action + Context: Automated Task Assistance 13

16. Katifori, A., Vassilakis, C., Daradimos, I., Lepouras, G., Ioannidis, Y., Dix, A., Poggi, A.,
Catarci, T.: Personal Ontology Creation and Visualization for a Personal Interaction Man-
agement System. In: Workshop on The Disappearing Desktop: Personal Information Man-
agement 2008. CHI 2008 (2008)

17. Sauermann, L.: The Gnowsis Semantic Desktop for Information Integration. In: The 3rd
Conference on Professional Knowledge Management, pp. 39–42 (2005)

18. Katifori, A., Vassilakis, C., Dix, A.: Using Spreading Activation through Ontologies to
Support Personal Information Management. In: Common Sense Knowledge and Goal-
Oriented Interfaces (CSKGOI 2008) (workshop at 2008 International Conference on Intel-
ligent User Interfaces (IUI 2008). CEUR Workshop Proceedings, vol. 323 (2008)

19. Anderson, J.: A spreading activation theory of memory. Journal of Verbal Learning and
Verbal Behaviour 22, 261–295 (1983)

20. Dix, A., Katifori, A., Poggi, A., Catarci, T., Ioannidis, Y., Lepouras, G., Mora, M.: From
Information to Interaction: in Pursuit of Task-centred Information Management. In:
DELOS Conference 2007 (2007)

21. Dix, A.: Towards a Ubiquitous Semantics of Interaction: phenomenology, scenarios and
traces. In: Forbrig, P., Limbourg, Q., Urban, B., Vanderdonckt, J. (eds.) DSV-IS 2002.
LNCS, vol. 2545, pp. 238–252. Springer, Heidelberg (2002)

22. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction, 3rd edn. Prentice
Hall, Harlow (2004)

23. Dix, A., Finlay, J., Abowd, G., Beale, R.: Chaper 15 sides. Online Teaching Resources for
Human-Computer Interaction (2004),
http://www.hcibook.com/e3/resources/

24. Asimakopoulos, S., Fildes, R., Dix, A.: Grammatically interpreted task analysis for supply
chain forecasting. In: Proceedings of the 10th British HCI Conference, vol. 2, pp. 235–237.
British Computer Society (2005)

25. Cypher., A.: Eager: Programming repetitive tasks by example. In: Proc. of the Conference on
Human Factors in Computing Systems (CHI 1991), pp. 33–39. ACM Press, New York (1991)

26. Finlay, J., Beale., R.: Neural networks and pattern recognition in human-computer interac-
tion. ACM SIGCHI Bulletin 25(2), 25–35 (1993)

27. Dix, A., Finlay, J., Beale., R.: Analysis of user behaviour as time series. In: Monk, A.,
Diaper, D., Harrison, M. (eds.) Proceedings of HCI 1992: People and Computers VII, pp.
429–444. Cambridge University Press, Cambridge (1992)

28. Lieberman, H.: Your wish is my command: programming by example. Morgan Kaufmann,
San Francisco (2001)

29. Dix, A., Beale, R., Wood, A.: Architectures to make simple visualisations using simple
systems. In: Proceedings of the Working Conference on Advanced Visual interfaces, AVI
2000, pp. 51–60. ACM, New York (2000)

30. Ramduny-Ellis, D., Dix, A., Rayson, P., Onditi, V., Sommerville, I., Ransom, J.: Artefacts
as designed, Artefacts as used: resources for uncovering activity dynamics. In: Jones, P.,
Chisalita, C., van der Veer, G. (eds.) Special Issue on Collaboration in Context: Cognitive
and Organizational Artefacts, Cognition, Technology and Work, vol. 7(2), pp. 76–87
(2005)

31. Task Analysis Through Cognitive Archeology Frank Spillers. In: Diaper, D., Stanton, N.
(eds.) The Handbook of Task Analysis for Human-Computer Interaction, pp. 279–290.
Lawrence Erlbaum Associates, Mahwah (2004)

32. Dix, A., Ramduny-Ellis, D., Wilkinson, J.: Trigger Analysis: Understanding Broken Tasks.
In: Diaper, D., Stanton, N. (eds.) The Handbook of Task Analysis for Human-Computer
Interaction, pp. 381–400. Lawrence Erlbaum Associates, Mahwah (2004)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 14–28, 2008.
© IFIP International Federation for Information Processing 2008

Assessment of Object Use for Task Modeling

Sybille Caffiau1,2, Patrick Girard1, Dominique L. Scapin2,
Laurent Guittet1, and Loe Sanou1

1 Laboratoire d’Informatique Scientifique et Industrielle, Téléport 2-1 avenue Clément Ader,
86961 Futuroscope Cedex, France

{sybille.caffiau,girard,guittet,sanou}@ensma.fr
2 Institut National de Recherche en Informatique et en Automatique, Domaine de Voluceau -

Rocquencourt- B.P. 105
78153, Le Chesnay, France

{Dominique.Scapin}@inria.fr

Abstract. Past research in task modeling suggests the need to introduce objects
when using task models for the design of interactive applications. Objects are
however rarely included in the task model notations and formalisms. Further-
more, when part of the formalism, their definition is usually informal; and the
supporting tool does not generally take them into account for simulation. K-
MADe is the first tool that fully uses objects for condition evaluations during
task model simulation. This paper presents an evaluation investigating the usage
of formal objects with K-MADe. The results show that whilst object concepts
seem to be essential in the task model process, their usage and manipulation is
not easy.

Keywords: evaluation, task models, objects, K-MADe.

1 Introduction

Designing interactive applications requires a good knowledge of what the users need.
One method to gather users requirements is to build task models [1, 2]. Every
task model formalism contains different elements to express the user activity such as
task categories, scheduling operators and elementary attributes [3]. Many research on
task model formalisms pointed out object definition as part of the essential elements
in task modeling [4, 5], especially when task models are used to produce interfaces.
This work concerns the analysis of the situation [6], the design of interfaces adapted
to the context of use [7], or the generation of interfaces from task models [8]. None-
theless, very few models actually include objects in their formalisms.

One interest of using a task model editor is the ability it offers to validate task
scheduling along with the user. In order to facilitate this validation, task model editors
contain simulation tools. To reach this aim, objects must be dealt with.

This paper presents an evaluation of the definition and use of task model objects.
In order to perform this study, we used K-MADe as a tool support (the corresponding
tool of the K-MAD formalism [9]). This tool has been chosen for two main reasons:
first the object definition is formal (important aspect to validate task models) and

 Assessment of Object Use for Task Modeling 15

second, it is currently under development thus, the results of this evaluation will be
used to improve the tool usability and usage. The first two parts of this paper present
the objects used in task models, particularly in the K-MAD formalism and in its asso-
ciating tool K-MADe. The following parts describe the various steps of the evalua-
tion; going through the goal, participants, procedure, equipment, collected data and, at
last, a critical analysis.

2 Objects in Task Models

Task analysis is essential to design interactive applications [10]. In order to facilitate
the task analysis process, task models were developed. Due to the wide diversity of
task model formalisms and notations, a comparison of the different systems [2] and
their components was conducted [1]. This second comparative study highlights the
presence of objects in the majority of formalisms to introduce domain models using
references, or to embody them in task models. In this paper, we focus our study on
task model formalisms that embodied objects.

As stated by Limbourg [1]: “A tool clearly facilitates the task modeling activity,
hiding the model notation from the analyst and helping him or her capture it.” p137.
Moreover our evaluation necessitates the use of a tool. Thus, we looked at the use of
objects in task model tools. Five task model formalisms (and their associated tool)
correspond to these two criteria: CTT [11] (CTTE), Diane+ [12] (TAMOT), GTA [4]
(EUTERPE), MAD* [13, 14] (IMAD) and K-MAD [15] (K-MADe). We will briefly
present the use of objects in the tools before comparing them. Then, we describe in
further details the use of objects, before comparing the tool we chose for our study,
K-MADe.

2.1 Formalismes Using Objects

CTT (CTTE). CTTE objects [16] are a task property. They are characterized by: a
name (string); a “class” among string, numeric, object, description or position; a type
among perceivable (object presenting any information or allowing action of user) and
application (intern in the system); an access mode (only reading or modification); a
cardinality among low, median and high; and the platforms where the object is rep-
resented. To our knowledge, no documentation describes in details the concepts of
class and cardinality. According to our use of the tool CTTE, we associate the need of
the cardinality characteristic with the generation of interfaces [8] based on CTT dia-
grams. However, the CTTE simulation tool does not take into account objects and we
only found some documentation relating to the use of objects for interface generation.

Diane+ (TAMOT1). The task model Diane+ integrates objects, named data, and uses
them to define conditions. However, in the associated tool: TAMOT, the only edit-
able condition is the pre-condition, expressed in the form of a string.

GTA (EUTERPE). In EUTERPE, objects are first class components. They are char-
acterized by a name (string); a list of attributes (each attribute is composed of a

1 http://www.ict.csiro.au/staff/Cecile.Paris/IIT-Track-Record-Past-Projects/Projects/Isolde/

Tamot/Index.htm

16 S. Caffiau et al.

name (string) and a value (string)); and a list of users (the users who can manipulate
the object). The users are defined as labeled agent. Relations can be defined between
agents and objects (owner, create, destroy, use/inspect, change). An agent is defined
by a name (string); a type (individual, organization or computer system); and a role
(a set of tasks performed by an agent). Moreover, EUTERPE allows the definition of
events. These are composed of a name (string) and the set of tasks they are linked
with (task set).

MAD* (IMAD). Two types of object are present in MAD*. They correspond to the
object-oriented notions of class (abstract objects) and instance (concrete objects).
Each object is composed of a name (string), a number (the ergonomic number corre-
sponding to its place in the task tree (integer)), a list of attributes. The abstract object
attributes are characterized by a name (string) and a type (string, boolean, integer)
and concrete object attributes by a name (string) and a value. Some characteristics
are addressed to abstract objects as a meta-class (generalizing link); a sub-class (spe-
cializing link); a condition of instance numbering (restriction to one instance). How-
ever, in IMAD the two types of objects are not differentiated. The user cannot give a
value to IMAD object attributes.

K-MAD (K-MADe). K-MAD allows the definition of entities that characterize the
environment of the user. These entities either represent what s/he handles or what
influences the course of his/her activity. The various types of these entities are: users
(set of users implicated in the activity); events (set of events that can be triggered or
caused by the activity); objects (set of concepts handled by the user).

As for MAD*, objects can be abstract or concrete. Whilst abstract objects are com-
posed of the characteristics of the objects that are manipulated by users in real world,
concrete objects are instances of abstract objects. Each object possesses attributes:
abstract attributes (belonging to abstract objects) are their characteristics. Concrete
attributes, belonging to concrete objects, aim at associating a value to each character-
istic defined by an abstract attribute. These objects are used to define pre-conditions,
post-conditions and iteration conditions. K-MAD includes groups of concrete objects,
in addition to the definition of the users and the involved events.

In this paper, we present an evaluation of the use of all these elements referred by
the term “entities”.

2.2 Comparison of Objects in Tools

Table 1 synthesizes the different paradigms used in the five task model tools. Only
two of them define the notions of events and users; EUTERPE and K-MADe. In these
two tools, they are associated with the tasks.

With the exception of TAMOT (which does not contain data of the model Diane+),
all the tools contain the concept of objects and they can be split in two categories.
First, the tools considering objects as task attributes (as CTTE), and then the tools
considering objects as first class component of the formalism (as EUTERPE, IMAD
and K-MADe).

Moreover, in CTTE, a particular object attributes is its cardinality. It is used to help
designer define the interactive element presenting this object. In addition, perceivable
objects may be a table or a window… thus this tool associates interactive objects to

 Assessment of Object Use for Task Modeling 17

Table 1. Comparison of concepts in task model tools

Tool Events Users Objects Conditions
CTTE Object pre-condition (String)
TAMOT pre-condition (String)
EUTERPE Event Agent Object pre-condition (String)

post-condition(String)
IMAD Class pre-condition (String)

post-condition(String)
K-MADe Event Users Abstract Object

Concrete Object
pre-condition (Formal Expression)
post-condition (Formal Expression)

tasks. The introduction of these elements (cardinalities and perceivable objects) in
task model formalism illustrates the link between objects and interface presentation.

This definition is close to a system point of view, whereas in all others tools, object
concepts aim to be closer with to ergonomic point of view. Whilst objects defined in
CTTE are concrete (a value is associated to the object since its definition), IMAD
does not allow giving a value to object attributes, staying in an abstract level of defi-
nition. This level of definition freezes the manipulation of task model objects.

All the formalisms include pre-conditions associated to the tasks. Their validations
are mandatory for the execution of the tasks. Then, to allow the validation of task
models by the user and thus, the verification the task scheduling (using simulation),
these conditions need to be computed. In order to compute them, definitions of ob-
jects and conditions have to be formal. Among all the tools, whilst K-MADe allows
these formal definitions, all others define conditions using non-computing string.

Due to this possibility of computation of expressions (for instance during the simu-
lation of task models) using these objects, the degree of K-MADe object definition is
limited (i.e. object is composed of predefined types) while objects in EUTERPE may
be composed of other objects.

After observing two types of object definition in task model formalisms, we can
define three groups of tools according to the type of object definitions. Firstly, a
group of tools with a low level of formal definition (i.e. containing definitions allow-
ing no verification (as IMAD, TAMOT and CTTE)). Secondly, the medium group,
containing EUTERPE, that does not contain formal objects but defines formal rela-
tionships between them and tasks. Last, the more formal tool, K-MADe allows formal
definition of objects and conditions, which allows using objects during simulation. As
we stated in the introduction, this possibility seems essential for our purpose.

3 Presentation of the Tool K-MADe

K-MADe (K-MAD environment) [9, 15] has been developed to model, manipulate,
and evaluate the K-MAD formalism. It implements the different characteristics of the
K-MAD model. We used it to perform our evaluation of the usage of objects in task
models. In section 3.1, we give a general presentation of K-MADe. Section 3.2 out-
lines the specificities to use objects in the tool.

18 S. Caffiau et al.

3.1 General Presentation

The K-MADe tool is targeted towards people wishing to describe, analyze, and for-
malize activities of human operators or users. It allows the creation of task models
concerning non-computerized or computerized experiments, real-world or simulated
situation, on the field or in laboratory. Whilst all kinds of profiles are possible, this
environment is particularly intended for ergonomists and HCI specialists. Due to the
wide range of user’s background and skills, the tool allows different levels of descrip-
tion, from simple graphics to detailed mathematical expressions using the following
available tools:

- A graphic editor of the K-MAD task model. It uses direct manipulation techniques
to build, handle and cancel tasks (label 1 in Figure 1).

- Editors of task characteristics (see the list above). Label 2 in Figure 1 indicates
one of the three representations it provides.

- An editor of abstract objects, users, events and concrete objects. Objects can be
added, modified and removed. The editing and removal of objects implies the
modification of all associated objects. Sheets (label 3 in the Figure 1) allow to ac-
cess these object definition editors.

- An editor of expressions for pre-conditions, post-conditions and iterations. The
tool is able to check the grammar of expressions, and to evaluate them.

- A simulator that allows animating task models.
- Tools for analysis of task models (statistical, coherence, queries…).
- A tool for printing task trees and task characteristics.

1

2

3

Fig. 1. The main window of K-MADe tool

3.2 Objects in K-MADe

Several K-MADe components are dedicated to the different entities we previously
mentioned. We classify them into two groups; components for editing and compo-
nents for usage.

 Assessment of Object Use for Task Modeling 19

Entity edition. Each K-MAD entity is defined using different windows. Editing
events and users is equivalent to textually label them and eventually to add a
description to them. Contrary to these basic and informal definitions, editing objects
is more detailed. Two different windows allow the definition of the two object types;
one for abstract objects and one for the concrete ones. The Figure 2 presents the
window for editing abstract objects. Types of object attributes (label 1 in Figure 2) are
defined among usual programming types (boolean, string, integer). Moreover,
concrete objects are accessible only through groups of abstract objects, thus in the
abstract object editor, groups are editable (label 2 in Figure 2).

Fig. 2. The K-MADe abstract object editor

The Figure 3 from [15] shows relationships between abstract objects, concrete ob-
jects and groups.

Fig. 3. Relationships between abstract objects, concrete objects and groups

Object usage. K-MADe entities are used to characterize task events (triggered and
generated), conditions (pre, post and iteration) and authorized users. The designer
chooses from the set of defined ones to associate users and events with task.
Conditions (using objects) are edited using the calculator based on B semantics [17].
A special kind of calculator is dedicated to each condition type. Figure 4 shows the
calculator for the pre-condition edition. Once edited the conditions can be used to
help simulate and consequently validate task models.

2

1

20 S. Caffiau et al.

Fig. 4. Pre condition editor calculator

4 Goal of the Study

The study presented in this paper aims to evaluate the use of entities (objects, events
and users) in modeling the users’ activities. Whilst K-MADe is addressed to users
with different skills (computer scientists, ergonomics…), the participants to our study
are students in HCI. The target of our evaluation is using task models for application
design. K-MAD task model formalism was developed to present the different steps of
the task analysis, staying in the task analyst point of view. Thus, the entities are not
described using developer vocabulary. For example, the term “class” is not used to
identify the abstract object concept. In order to better understand why entities are/can
be used, we focus on two aspects: the role they play for users and what consequences
their use have on task models. Following these aspects, we separated our study into
two evaluations.

The first evaluation aimed at defining schemas of modeling processes focusing on
the processes where entities are edited and used. In the second evaluation, we investi-
gated the difficulties related to these concepts: the understanding of the tool, and the
definition of models using K-MADe.

5 Participants

All participants were students in their fourth year of French university. There were
split into two groups, each participant performing only one of the two evaluations.
The first group was composed of 48 bio-informatics students, and the second one of
20 computer science students (studying computer science since their first year of uni-
versity). Only one computer science student (participant in the second evaluation ses-
sion) is not French speaker. However, they all attended the same HCI course. This
course focuses on user-centred design and where task modeling is presented. The K-
MAD formalism was explained in details in the lecture (approximately 4 hours) and
students practiced task modeling using K-MADe before the evaluation (approxi-
mately 6 hours, performing some task models checked by tutors). Then, even if they
are not modeling experts they were more trained to use a task model notation than
ergonomic task model experts [18].

The second part of this course was focused on evaluation (basic concepts of
evaluation and main methods used in evaluation [19]). As students play the role of
evaluators, the protocol applied in this survey is used as an example in order to

1

2

 Assessment of Object Use for Task Modeling 21

facilitate their future evaluation workload. However, as this study was their first prac-
tical evaluation, their participation was limited to the observation and its annotation.
Moreover, their notes were completed with other data.

6 Evaluation Method

In order to perform this evaluation, we used a widely used evaluation technique [19]:
real-time expert observation of subjects using the tool. In this part, we will present the
experimental procedure, the directives that were given to the participants, and finally,
the method used to complete the expert’s evaluation.

6.1 General Organization

The two evaluations were performed with a gap of one month between the first and
last evaluation. Each evaluation followed the same process. All students were paired.
During the first session, one student acted as task model designer (using K-MADe,
labeled user), while the second acted as the expert (named observer). They reversed
roles during the second session. Each session lasted one hour and a half with a fifteen
minutes break between sessions. The activity to model was the same for all students
and it was introduced in French at the beginning of the sessions.

6.2 User Work

The user had to model the activity of completing a volley-ball game marking sheet.
Instructions for this activity were given at the beginning of sessions. They were com-
posed of the official instructions of the French Federation of Volley-Ball (FFVB) and
two examples of marking sheets (completed and non-completed ones). K-MADe was
used to model the tasks to perform.

6.3 Observer Work

During modeling, observers insured that their user verbally described their modeling
process, and annotated what they observed concerning the use of the tool by the user
(hesitations, exploration in several parts of the software without actions and so on.).
In order to help observers in their evaluation, we gave them observation sheets (illus-
trated in Table 2). These sheets were mainly composed of a three columns table corre-
sponding to the three types of information recorded for each observation:

- The type of the observation among a set of defined categories (user goal (G), tool
functionalities (F), functionality utilization (FU) and information (I)).

- The observation in textual form.
- The time of observation.

6.4 User-Logs and Questionnaires

In order to complete the observers’ notes and the task model performed, we used two
others types of data.

22 S. Caffiau et al.

Table 2. Observation sheet example

Type Observation Temps
FU The principal window is not accessible

(“simulation” is noted on but the simulation
window is not accessible too).
=> launch again K-MADe

14h32

G looking for the object definition 14h34
14h37

F user does not understand the signification of
the button with shell-hole

14h40

User-Logs. To complete the observations realized during the evaluation, the users in
the first evaluation used a version of K-MADe with sneaks. These ones allowed keep-
ing track of user’s actions using timestamps and produced a text-file (the user-log).
Particularly, this log indicates when the user enters and exits each K-MADe tool (task
space, abstract objects, condition editions (pre, post and iteration)…). Figure 5 shows
an example of information in this file.

Fig. 5. Illustration of data recorded in the user-log

Questionnaires. Participants were asked to complete a questionnaire in French about
the use of objects in the second session of the evaluation. This questionnaire was
composed of five questions on definitions, object deletions and conditions.

7 Data

As each of the two evaluations tried to reach different goals, we did not collect the
same data for both experiments. In this section, we present the results of each study.
Table 3 resumes the data gathered according to the session and the evaluation goal.

7.1 Collected Data

First evaluation. The first evaluation session aimed at analyzing the task modeling
process, particularly when the K-MAD entities are defined and manipulated. In order
to obtain this information, we used user-logs and notes from the observers. These two

 Assessment of Object Use for Task Modeling 23

types of information allow the collection of two complementary data. While the ob-
server is focused on the user usage, what her/his goals are and how s/he conceptually
model, the user-logs give information on how the K-MADe components are used.
Using timestamps on both data, we can determine how users use K-MADe tool
components.

Moreover, we requested of each student to exploit their notes and the user-log to
write an evaluation report. It includes the modeling process of the observed people,
his/her use and usage of the tool, and an analysis of the resulting model. Whilst the
produced documents were then readable and quite organized, models, observer notes
and user-logs were also collected for analysis.

This first evaluation session helped to determine when K-MADe entities were used
in the general modeling process. However we did not collect any precise information
about their usage, the second session aims to answer this question.

Second evaluation. As for the first evaluation, the user’s behavior was reported in the
observer notes and a document was written to report clearly their observations. How-
ever, user-logs do not gather information about entity usage thus we did not use them
for this session. In order to analyze K-MADe entity usage, we considered two types
of data: the models and the questionnaires. Verification of entities in the resulting
models indicates the degree of understanding of the object concept. Questionnaire
analysis (associated with the student report analysis) aims to inform us on the difficul-
ties and the needs of using objects.

Table 3. Data gathered and its goal

Session Data Goal
1 - user-log

- observer-student notes
- student exploitation document
- model

user activity when modeling
student-user comportment
writing report of the notes
verification of student analysis

2 - observer-student notes
- student exploitation document
- model
- questionnaire

student-user comportment
redaction of their notes
validation of object definition and usages
object concepts

7.2 Selection of Data

During the first evaluation we collected one folder per user. It included the observer
notes, the user-log, the observer exploitation document and the task model. This study
aimed at gaining some understanding on the modeling process. The data used to de-
duce users modeling process was mainly taken from user-logs. This file was auto-
matically generated without any technical problem. However, we did not want to use
these user-logs without taking into account the context (reproduced in the observer-
student notes and exploitation document). Two of the folders were not complete and
therefore were not included into the analysis. We ended up considering 46 out of the
48 folders in our analysis.

The data used for the second evaluation included all the information in the folders,
we could therefore only consider the fully-completed folders. However whilst for the

24 S. Caffiau et al.

first analysis the observer notes, the student exploitation document and the task mod-
els were only used to help us give a context to the user-log data, for the second one
they were essential. During this evaluation process, we observed that the only non-
French speaker student could not understand all the directives (this observation was
confirmed when he ought to complete the questionnaire). He was therefore not con-
sidered in the analysis. The second part of our evaluation is based on 19 complete
folders.

8 Object Definition and Use in Task Modeling Process

Prior to identify the intervention of objects in the task modeling process, we observe
that some students did not define objects. Indeed, 26% of users (12/46) of the first
session evaluation did not try to define (or use) any K-MAD object. However, we
cannot precisely identify why. Two reasons may explain the absence of these ele-
ments in task model process: the limited duration of the experiment, or the non-
assimilation of object concepts. Student notes and reports did not allow us to identify
the main reason. Six participants indicated that the sessions were not long enough but
others (6/12) did not give any relevant information on the subject.

From the 34 remaining folders, we identify three main schemas followed by user to
perform task models. The most used ones (43,75%) are divided into two steps. Firstly,
the user composes the task tree (decomposes tasks). Secondly, s/he iteratively edits
entities and associates them with tasks. Steps of the second most used schema (28%)
are sequential. The user performs the task decomposition prior to define all entities,
and then associate them with the tasks (using conditions). Moreover, an incomplete
process (followed by 22% of user-students) is composed by the first two steps of the
second schema. The last schema is the iteration of the second one. The Figure 6 re-
sumes the fist and the second schemas.

These observations give us some understanding on the place objects have in the
task modeling process. As an example, the concurrent definition of objects and task
tree composition indicates that the user associates objects and tasks. On the contrary,
when the definition and the use of objects are separated with the task tree composi-
tion, we can deduce that the user defines objects only to use them on conditions.
Therefore, objects bear the role of associating properties and tasks for some users.

Fig. 6. Schemas of student task modeling process

From the data gathered in both evaluation sessions, we want to identify what are
the elements used during the task modeling process. Table 4 shows how many

task tree composition;
While (time is not finished)
{
 edit objects;
 define properties using
them;
}

task tree composition;
edit objects;
define properties using
them;

 Assessment of Object Use for Task Modeling 25

students define each task model component. According to these results, few users
integrated the concepts of events (20% in the first evaluation and 26% in the second)
and users (20% and 10,5%) in the task modeling process. On the contrary, the major
part of the first evaluation users and all user-students of the second defined the objects
(abstract and concrete objects) to model the activity.

Table 4. Users defining each of K-MADe elements

 Event User Abstract
Object

Concrete
Object

Group Pre Post Iteration

1 20% 20% 74% 60% 74% 40% 40% 20%
2 26% 10,5% 100% 100% 100% 84% 89,5% 84%

The definition of event and user objects is textual. Associating them with tasks is
easy using selection among the defined elements. On the contrary, the abstract and
concrete objects are composed of several concepts. Thus, the difference of the use
between these two types of concepts (composed and non-composed ones) cannot be
explained by the level of difficulties of the definition.

However, Table 4 indicates also the proportion of users using pre, post and itera-
tion conditions. In the first evaluation session, these three types of object manipula-
tion were widely used in the task modeling process (84% defined at least one
pre-condition, 89,5% defined at least one post-condition and 84% defined at least one
iteration condition). Prior to edit these conditions, the user needs to define the objects
(abstract objects, concrete objects and groups). Then, the objects may be defined only
to allow the definition of conditions. Therefore, users did not conceived objects as a
part of tasks but as a way to define conditions.

From these numbers, we observe that for the majority of students, it is natural to
define objects in order to complete the semantics of scheduling operators. As an ex-
ample, a volley-ball game ends when one team wins at least 3 sets, no matter of the
score of the other team. This condition for the end of a game cannot be expressed us-
ing only scheduling operators. All students naturally defined it using objects and
conditions.

The study of the proportion of definition of K-MADe concepts of the two sessions
shows a difference between the two groups. In the first evaluation, 26% of users do
not use any entity. All participants followed the same lecture then, the explication of
this gap cannot be found in this teaching. However, these groups do not have the same
background. Numbers shown in Table 4, clearly indicate that formal object definitions
are easier to be used for computer scientist students.

9 Object Usages

Students use K-MADe in order to define and use entities in task modeling process.
Our evaluation aims to understand conceptual and procedural usages of objects. All
analysis presented in this part are based on the data gathered in the second evaluation.

26 S. Caffiau et al.

9.1 Conceptual Usages

Even if second evaluation students integrated entities in task modeling and used them
(in pre, post and iteration conditions), 58% of them noticed that some of these con-
cepts were not understood. These difficulties did not affect the concepts of events and
users, used less (26% use events and 10,5% use users) but that were easy to use.

On the contrary, concepts of abstract objects, concrete objects and groups repre-
sented respectively 72%, 64% and 27% of difficulties of understanding. Likewise, the
use of conditions was not understood by 10,5% of users. 87,5% of users that did not
understand the concept of abstract objects (resp. concrete objects), did not also under-
stand the concept of concrete objects either (resp. abstract objects).

The definitions of these two types of objects are very closed, thus the difficulty of
using objects seems to be the link between them. This analysis is supported by an-
other observation. Whilst all students indicate that they wanted to edit and use objects,
one of them could not describe his definition of objects (abstract, concrete objects
and groups).

As we said before, in K-MADe, the manipulation of the concrete objects necessi-
tates the use of groups (label 2 in Figure 2). The role played by the group concept
represents a difficulty of conceptual understanding for 67% of users of the second
evaluation (we did not collect the point of view of the participants of the first evalua-
tion). Firstly, they indicate that they do not understand why the groups are required
for the definition of concrete objects showing the non-understanding of the relation-
ship between concrete objects and groups (shown in Figure 3). Secondly, K-MAD
does not allow the definition of the number of elements in groups. Then, the users
regret the need to define a group to use only one concrete object.

9.2 K-MADe Object Usages

Our evaluation highlights difficulties from the use of K-MADe to manipulate con-
cepts. Some of users need to edit the K-MAD concepts in several steps. Therefore,
42% of users indicated the need to edit again at least one abstract object and 37% at
least one concrete object. Concerning the definition of groups, the proportion is more
important because nearly one student out of two (47%) did not define every group at
the first attempt.

We did not gather any information about the modifications done during the edition
of objects. However, 42% of users indicated that they wanted to delete at least one
abstract object, 63% at least one concrete object, and 47% at least one group. These
needs seem to indicate that modifications are important on objects. Moreover, they
confirm the conceptual understanding difficulties shown preliminarily.

K-MAD (abstract and object) objects are composed of attributes. K-MADe allows
to define them with a name and to associate a type of value (or the value for concrete
object). The available types of value (label 1 in Figure 2) respectively are boolean,
integer and string. These types are used by 58%, 89,5% and 42% of users. The variety
of available types are widely used, as only one 37% of users used a unique attribute
type to define objects (string or integer).

As users are computer scientists, they are familiar with attribute types. Therefore,
they do not find difficulties in understanding and using type attributes. Due to their

 Assessment of Object Use for Task Modeling 27

background, they feel necessary to define other types of attributes such as date, hour
or defined objects. Moreover, they indicated the non-understanding of the need of
groups to define the concrete objects (58%).

Naming attributes, objects and groups requires the respect of a particular syntax
without stresses, underscores and spaces. However, the tool does not indicate these
syntactic rules and automatically changes spaces in the names (when the users put
them). As these modifications are done automatically (without either any intervention
of the users nor any indication), the consequent errors during the condition computa-
tions were not understood by the users. 30% of the users indicate they showed this
error type during the modeling process.

Then, the last observation concerns the manipulation of objects via calculators. To
allow the manipulation of objects and the combination of them, there are operators
(label 1 in Figure 4) and defined functions (label 2 in Figure 4). The use of this sec-
ond type of elements induced some problems. In the tool, there are not any explica-
tions either about the sense of the functions, nor to precise what are the order and the
type of parameters

10 Conclusion and Future Works

In this paper, we presented an evaluation of the use of the object concept using a task
model tool; K-MADe. The data gathered during the evaluation supports the theoreti-
cal idea that objects are part of task models. In order to formally express conditions
(and complete the scheduling of the task decomposition), the introduction of objects
in the modeling process appears intuitive for the participants of our evaluation. How-
ever whilst the necessity of the definition of these task entities does not cause any
conceptual difficulty for participants, using them is more difficult.

Users indicated some lacks in the tool that influence their task model process: for
example, the limitation of object attribute types (no date or hour format) or the impos-
sibility to define an object composed of others (as EUTERPE proposes).

In addition, we observe two major difficulties in the usage of task model objects.
Firstly, some of them, the events and the users, are not used and then, do not seem to
be understood by users. In the lecture these concepts were presented along with the
others thus the lack of usage seems due to the concepts themselves, either to their
presentation in the tool or to their definition. No evaluation data allows to precise this
fact. Secondly, defining formal conditions using objects is not user-intuitive. Reasons
of this difficulty may be the use of the calculator (non-intuitive) or the representation
of objects (that need to be naturally manipulated). In order to improve this usage, we
need to modify the calculator and presentation of objects.

However, the participant’s skills in computer science do not allow us to generalize
our observations to all users. Moreover, as we shown before, a minor difference of
skills considerably modifies the usage of objects (see Table 4). In order to gain a
broader point of view, the same type of evaluations with other background partici-
pants has to be performed.

Last, this evaluation aimed at understanding the usage of objects on task modeling
process. However in K-MADe, objects are taken into account in the simulator tool
then, a research plan of experimental studies will be performed investigating the role
of objects in the task model validation step.

28 S. Caffiau et al.

References

1. Limbourg, Q., Vanderdonckt, J.: Comparing Task Models for User Interface Design. In:
Diaper, D. (ed.) The Handbook of Task Analysis for Humain-Computer Interaction, pp.
135–154 (2004)

2. Balbo, S., Ozkan, N., Paris, C.: Choosing the Right Task-modeling Notation: A
Taxonomy. In: Diaper, D., Stanton, N.A. (eds.) The Handbook of Task Analysis for
Human-Computer Interaction, pp. 445–466 (2004)

3. Lucquiaud, V.: Sémantique et Outil pour la Modélisation des Tâches Utilisateur: N-MDA.
Thesis. Poitiers, 285 (2005)

4. Van Der Veer, G.C.: GTA: Groupware Task Analysis - Modeling Complexity. Acta
Psychologica, 297–322 (1996)

5. Dittmar, A., Forbrig, P.: The influence of improved task models on dialogues. In: CADUI,
pp. 1–14 (2004)

6. Van Der Veer, G.C., Hoeve, M., Lenting, B.F.: Modeling Complex Work Systems -
Method meets Reality. In: Green, T.R.G., Canas, J.J., Warren, C.P. (eds.) 8th European
Conference on Cognitive Ergonomics (EACE), INRIA, Le Chesnay, pp. 115–120 (1996)

7. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interacting With
Computers 15/3, 289–308 (2003)

8. Paternò, F., Santoro, C.: One model, many interfaces. In: Kolski, C., Vanderdonckt, J.
(eds.) Computer-Aided Design of User Interfaces (CADUI 2002), Valenciennes, Frances,
pp. 143–154 (2002)

9. Baron, M., Lucquiaud, V., Autard, D., Scapin, D.: K-MADe: un environnement pour le
noyau du modèle de description de l’activité. In: Robert, J.-M., David, B. (eds.) IHM 2006,
Montréal, Canada, pp. 287–288 (2006)

10. Hackos, J.T., Redish, J.C.: User and task analyis for interface design. Wiley, New York
(1998)

11. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications (2001)
12. Tarby, J.C., Barthet, M.F.: Analyse et modélisation des tâches dans la conception des

systèmes d’information: la méthode Diane+. In: HERMES (eds) Analyse et conception de
l’IHM, interaction pour les Systèmes d’Information, vol. 1, Paris (2001)

13. Gamboa, R.F., Scapin, D.L.: Editing MAD* task description for specifying user interfaces,
at both semantic and presentation levels. In: Harrison, M.D., Torres, J.C. (eds.)
Eurographics Workshop on Design, Specification and Verification of Interactive Systems
(DSV-IS 1997), Granada, Spain, pp. 193–208 (1997)

14. Scapin, D., Bastien, J.-M.C.: Analyse des tâches et aide ergonomique à la conception:
l’approche MAD*. In: Kolski, C. (ed.) Analyse et conception de l’I.H.M. / Interaction
Homme-Machine pour les S.I., Paris, France, vol. 1 (2001)

15. K-MADe electronic reference, http://kmade.sourceforge.net/
16. Paterno, F.: ConcurTaskTrees: An Engineered Notation for Task Models. In: Diaper, D.,

Stanton, N.A. (eds.) The Handbook of tTask Analysis for Human-Computer Interaction,
pp. 483–501 (2004)

17. Lano, K.: The B Language Method: A guide to practical Formal Development (1996)
18. Couix, S.: Usages et construction des modèles de tâches dans la pratique de l’ergonomie:

une étude exploratoire
19. Nielsen: Usability Engineering (1993) ISBN 0-12-518405-0

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 29–40, 2008.
© IFIP International Federation for Information Processing 2008

Task Model-Based Usability Evaluation
for Smart Environments

Stefan Propp, Gregor Buchholz, and Peter Forbrig

University of Rostock, Institute of Computer Science,
Albert Einstein Str. 21, 18059 Rostock, Germany

{stefan.propp,gregor.buchholz,peter.forbrig}@uni-rostock.de

Abstract. Task models are widely used within the research field of HCI for the
model-based development of interactive systems. Recently introduced ap-
proaches applied task models further to model the cooperative behavior of
people using devices within a smart environment. We describe a method of
model-based usability evaluation to evaluate interactive systems, with a particu-
lar focus on smart environments, which are developed based on task models.
We consider the evaluation in early development stages to interactively walk
through the models and in later stages to execute a test case within a real envi-
ronment. The paper provides results of a prototypical implementation.

Keywords: Model-based Usability Evaluation, Task Models, Smart
Environment.

1 Introduction

Today, model-based development methods are well-accepted in the field of designing
Human Computer Interaction systems. For instance, models are used to describe the
user tasks that are to be supported by the system and to specify various environmental
aspects, like involved devices and user roles. Based on such models, user interfaces
can be developed in a semi-automatic sequence of transformations preserving the mod-
els’ structure. We are interested in an integration of usability evaluation in all devel-
opment stages, and will outline (1) the general model-based approach and (2) existing
tool support for usability evaluations and then (3) focus on the specific challenges of
task-model based development of smart environments and (4) their evaluation.

1.1 Model-Based Software Development

A primary concern of this methodology is that software engineers and user interface
designers base their work on the same models: the task model, user model, business-
object model and the device model as a representative of a general environment
model. These models are as well the basis for the development of the software devel-
oped by software engineers as those for the user interface experts. Software develop-
ment is seen as a sequence of transformations of models that is not performed in a
fully automated way but by humans using interactive tools. In [9], the idea of

30 S. Propp, G. Buchholz, and P. Forbrig

supporting the development of task models by patterns is shown. Task models in this
approach are constructed in CTT (Concurrent Task Trees) [6] notation, describing
single actions and their hierarchical and temporal relations. One of the tools called
DiaTask [8] allows developing a dialog graph that represents the navigation structure
of the interactive system. Such a graph is based on the previous specified task model.
A dialog graph consists of a set of nodes, which are called views and a set of transi-
tions. There are several types of views to specify different characteristics in terms of
visibility, activation and composition. End views are final points in (sub-) dialogs.
Each view is characterized by a set of navigational elements. A transition is a directed
relation between an element of a view and a view reflecting navigational aspects of
user interfaces. DiaTask allows to assign several different dialog graphs to one task
model, thus providing support for the development of systems with different user
interfaces for different devices and/or groups of users. Given a task model and one or
more dialog graphs a simple WIMP style abstract user interface can be generated
wherein each task placed on a view is represented by a button on a XUL window.
This prototype is refined by a pattern-based replacement of the buttons with more
detailed components that help really fulfilling the tasks symbolized by the buttons.
The finished UI still keeps the links to the initially task model intact, thus providing
an interface to track the users’ actions with the system in terms of executing tasks.

1.2 Model-Based Usability Evaluation

There are some approaches to employ task models in usability evaluations. We will
have a look at two of them and afterwards introduce the specifics of model based
development of smart environment.

The tool RemUsine with its extension MultiDevice [7] uses task models to describe
the expected (planned) behavior of users and compares it to the output of another tool
component: the tool logger, which is supposed to be available at client-side. The log-
ging tool stores several types of system events during the test session. To provide
automatic analysis of the actual user behavior, possible system events have to be
mapped to tasks represented by leaf nodes in the task model. This association has to
be done once for several user sessions. The tool then provides assistance in analysis
by pointing out, at which parts of the tracked user actions the associated task execu-
tion violates temporal or logical relations in the task model. The component
MobileLogger protocols different types of system and environment variables and
includes a dialog based input form for entering these environment conditions. Finally,
the tool supports the evaluator in analyzing this potentially huge amount of data by
offering different graphical visualizations.

Another tool, developed closely oriented on the model-based development ap-
proach outlined above, is the ReModEl (“REmote MODel-based EvaLuation”) client-
server system [1]. Herein, no mapping of system events to tasks is necessary. One
client-side module captures any task-related events within an application developed
following the semi-automatic generation and replacement process. These events are
sent to the server as they occur and are stored for subsequent requests. An evaluation
expert can connect to the server with the same client software but different modules
and observe the events related to one or more specific executions. Thus, same-time
but different-place evaluations are provided. The client-module shows several

 Task Model-Based Usability Evaluation for Smart Environments 31

information about the execution, e.g. an animated task tree. There are other modules
that allow communication between several clients for example and support subse-
quent analysis.

1.3 Model-Based Development of Smart Environments

Recent developments aim at transferring the model based development approach into
the field of smart environments. We believe that both the actions of users in the smart
environment and the functionality of devices within it can be modeled as task models.

The description of each device’s capabilities with a task model chunk (device func-
tionality model, DFM) can be found in [12]. The idea is that each time a new device
connects to the room’s infrastructure its DFM fragment is added to the current task
model, referred to as room task model (RTM). Within this process, the combination
of available DFMs may provide some new functions, e.g. the conjunction of a scanner
and a printer offers a copying functionality. Based on that, the “Task-Constraint Lan-
guage” (TCL) was introduced in [11]. The actions of every user in the room are de-
scribed by a task model and constraints specify the modalities of collaboration, e.g.
that person “A” finishes his presentation, to give person “B” the floor. Important
enhancements have been suggested by Feuerstack et al. [2], extending the task model
notation CTT to serve as a runtime model. For that purpose, domain concepts are
annotated and an object flow is modeled; different users’ task models are synchro-
nized with domain objects.

1.4 Model-Based Usability Evaluation for Smart Environments

Our objective is to provide usability evaluation methods for model based smart envi-
ronments in all development stages. Because of the models being an inherent part of
the system there is no need to parse any log-files in order to extract task-related
information. Instead of that we can utilize the task model engine as the source for
relevant events. During design time, this engine is used to simulate and animate the
underlying models and during run time it acts as the logic within the smart environ-
ment providing assistance to the users.

The approach presented in this paper integrates usability evaluation activities in the
development process. Furthermore, we believe that software developers and usability
experts do not only benefit from working on the same models, but also profit from
working in the same environment and interdigitating their work.

Figure 1 shows the process in principle - based on the models (described in section 2)
a test case is developed as described in section 3. In section 4 the execution of a test case
is explained. Finally, section 5 discusses the analysis of the gathered data.

We define an evaluation scenario as a set of users and devices, each characterized
by properties and specific task models. Every user owns one or more roles and all
roles are characterized by a certain task model. Every device is associated with one or
more types described by a set of properties and a usage model in a CTT like notation,
which defines how a device is used. To evaluate a smart environment based on a
specific modeling technique the task model chunks to describe user behavior and

32 S. Propp, G. Buchholz, and P. Forbrig

Fig. 1. Usability Evaluation Process

device usage are mapped to CTT notation and additional information is annotated.
The aim is to track the interaction between user and environment and validate the
interaction according to the model in an analysis stage.

2 Usability within Task Model-Based Software Engineering

In this section we will firstly introduce the vocabulary used in the following. After-
wards, the evaluation approach is presented.

2.1 Disambiguation

According to [6] a task model TM is seen as the sum of possible task traces TT. The
hierarchical tree composition from actually executed tasks as leaf nodes and abstract
tasks as inner nodes represents the logical structure of the root task that is divided into
sub tasks. Within the activities described by a TM there is no contemporaneous exe-
cution of any two tasks. At any moment during the execution only one task can be
running. This restriction causes some difficulties in describing cooperative work and
ongoing activities with several devices in a smart environment. To allow the specifi-
cation of interactive systems with more than one user acting simultaneously, CTT has
been extended to Collaborative ConcurTaskTrees (CCTT) [5]. The main principle in
CCTT is to introduce a coordination task tree specifying the relations and interaction
between several other task trees that describe the different users or roles involved. In
those role-depending task trees a new kind of nodes (connection tasks) is introduced
to specify temporal dependencies to connection tasks within another roles’ task
model. The coordination task model describes these temporal dependencies. In our
approach to model the behavior of users and the functionalities of devices we use
such separate models for each role and device. Beyond this, Sinnig et al. [11] further

 Task Model-Based Usability Evaluation for Smart Environments 33

extended CCTT in order to consider the fact that each role is typically fulfilled by
different users. Therefore, for each user a copy (instance) of the corresponding role
task model is created. The various instances are executed concurrently during runtime
and the task constrain language (TCL) specifies synchronization points between sev-
eral instances.

For evaluation purposes the view on the execution of a specific task is more de-
tailed taking into account the different possible states of a task. States can be enabled,
disabled, running, suspended, done, and skipped. Each state change of a task, be it a
leaf node or inner node, is called a task event and the execution of a model based
system is described as a sequence of such events called Task Event Trace (TET).
Events occurring as a result of other events (e.g. the finishing of task “A” enables the
execution of task “B”) are placed beyond the causing event in the sequence.

During the preparation of a usability evaluation of a smart environment system an
expected behavior is specified called Expected Task Event Trace (ETET). This ETET
is used during the evaluation and the afterwards analysis to compare the actual behav-
ior of users and devices with the expected.

2.2 Brief Overview

This section describes the evaluation process in principle, details of evaluation tech-
niques and visualizations can be found in the subsequent sections.

For smart environments in the development stage we suggest a test setup wherein
at least two experimenters act as mediators between the smart environment room and
the task model interpreter. Such “Wizard of Oz”- experiments are a common tech-
nique for early stage tests of window based software systems and have been con-
ducted within a large number of projects.

The goals of the evaluation can be divided into two sub goals: One aim is to vali-
date the task models (models for roles, devices and the coordination task tree) and the
other one is to identify weak points in the environment’s sensors and the interpreta-
tion of the users’ behavior. We will outline the procedure of a usability evaluation and
point out, which kinds of problems are addressed.

The evaluation’s preparation starts with the definition of a scenario that is to be
carried out by one or more users in the smart environment room. Therefore, the task
models of all devices and roles participating in the proposed scenario are gathered and
an expected behavior has to be developed. This can be done by recording a usage
session conducted by experts or by defining a trace manually.

The users taking part in the evaluation are now instructed to fulfill the tasks de-
fined in the scenario. They do not know the complete task models in detail but only
the goal and a list of sub goals so as to avoid them to behave more unnatural than
inevitable.

During the evaluation the experimenters are provided with all information that is
produced by the sensors in the smart environment room, video streams from cameras
placed in the SE and an audio stream to keep track of the users’ activities. Further-
more, the current states and properties of the devices are displayed. All these data
flows are recorded to be used in subsequent analysis, too. We developed an Eclipse
plug-in to simulate multiple task trees describing a role’s action or a device’s capabili-
ties and functions. An experimenter can define a set of task trees for an evaluation and

34 S. Propp, G. Buchholz, and P. Forbrig

activate the simulations simultaneously. Each time the experimenter observes an ac-
tion he journalizes it using the task model simulation.

Another expert is responsible for initiating the effects on devices in the SE. Tasks
marked as system tasks in the device models are started and stopped in the simulation
and delivered as commands to the appropriate devices. Thus, the information flow out
of and into the smart environment room is complete: Observed actions are recorded
using the manual triggered model simulation and an additional protocol for tasks not
modeled so far, and the environment’s reactions are simulated by an operator sending
the commands to the devices in the smart environment room. The users performing
activities in the smart environment room interact with the room devices as if the task
model engine was triggering them according to the task models. The subsequent
analysis of the recorded events reveals several shortcomings of the SE system devel-
oped so far.

The next sections show how to prepare and conduct such an evaluation using the
tools that are developed.

3 Planning a Usability Evaluation

Within Eclipse all artefacts and documents necessary to conduct a usability evaluation
are defined in a UsabilityTestCase file. This includes a description of the evaluation
preparation and environment as well as a definition of the test case that is to be exe-
cuted. According to [9] the test plan specifies the required resources, focuses the
points to test, and serves as a communication tool between the different members of
the working team. It includes a high level description of the test’s purpose, a list of all
the questions and objectives that are to be solved by the test as precise as possible, a
description (profile) of all users involved, a detailed description of the test execution,
a list of tasks to be carried out by the users in an appropriate level of abstraction, and
a description of the used equipment and of the level of participation or neutrality of
the test conductors. In the context of model-based smart environments also the task
models of both user roles and device types are included, too. The definition of the test
executions can include instructions for the usability experts to ask questions to the
users during and/or after the test execution. These questions are linked to tasks in the
according task model and the links can contain filter criterions to define several ques-
tions as to be asked under specific circumstances only.

All information about one single execution of such a UsabilityTestCase is gathered
in a UsabilityTestCaseExecution file. Here, the recorded task event traces and the
description of the actual setup are stored. It also contains comments and notes made
by the usability experts during the evaluation. Figure 2 shows some elements in a
usability evaluation: The task models of users and devices as well as some artefacts
that are involved in the test case.

4 Conducting a Usability Evaluation (Simulation/Execution)

Now a usability test case is defined, which comprises a description of the test plan,
the physical environment (e.g. needed device types) and involved user roles. This

 Task Model-Based Usability Evaluation for Smart Environments 35

abstractly defined test case can be carried out several times with different concrete
users and concrete devices, which fit into the defined user roles and device types.
Conducting the same test case several times with slightly different parameters ensures
the statistical significance of the test result. It further allows identifying infrequently
occurring usability issues and comparing the behavior of different users.

4.1 Capturing a Task Event Trace

During the usability evaluation the users are observed and the users’ interactions are
captured. Capturing can be accomplished at different levels of abstraction, beginning
with low level events at the physical level (e.g. mouse clicks and a person changing
the location), up to the problem-oriented level (e.g. a person gives a presentation) [3].
We capture the interactions corresponding to an underlying task model, which de-
scribes for instance the behavior of a certain user role. Each record of the captured
task event trace comprises a time stamp, the conducted test case, the task model, the
task, the fired event and the success value. The applied task model simulation engine
[8] instantiates a task model and conducts a simulation through receiving events from
user interactions and exchanging events between task nodes within the task model.
Events cause state changes of the task nodes. For instance a task with the state “en-
abled” is caused by the event “start” to change the state to “running” and a subsequent
event “stop” leads to the state “finished”. Depending on the current state of a task,
some events are prohibited. For instance a task with the state “enabled” can not react
on a “stop” event, because the task has to be started first. In these cases no state
change occurs, but nevertheless the event is captured and marked as not successfully
processed. Beyond the events which are directly influenced by the user interactions
and sent to the leaves of the task tree, there are a lot of events exchanged between
inner nodes of the task tree. A task which changes the state sends a notification event
to the parent node which updates the own state and sends notifications to the other
children and the own parent. We have enhanced the task model simulation engine to
capture all these events as a task event trace.

4.2 Simulating and Executing an Evaluation

The task model simulation engine can be used at different stages of the development
of the smart environment. In early stages the task models can be simulated to evaluate
the content and structure of the task model. In later development stages the task model
based developed smart environment can be evaluated. We provide tool support to
simulate the execution of a smart environment. The figure below depicts the simula-
tion UI. The left hand side provides the design time view at the usability test case.
The right hand side provides the runtime view at the test execution. Every element of
the test case on the left is simulated as a task model at the right. A graphical symbol in
front of every task within the task tree reflects the current state of the task instance.
For instance a red cross marks a task as “disabled”, a green circle as “enabled” and a
blue tick mark as “finished”. The user triggers the simulation progress via context
menu. Each leaf task provides a menu to fire the events “run”, “start”, “stop” and
“crash”, depending on the current state of a task. “run” is a composition of “start” and
“stop”. “crash” aborts the execution of a certain task. The different task models are
simulated concurrently.

36 S. Propp, G. Buchholz, and P. Forbrig

Fig. 2. Usability Evaluation UI to execute a Test Case

To evaluate a real smart environment, the task engine can also be applied. The be-
havior of the users within the environment, like moving to the presentation zone or
switching a projector on, has to be recognized and a corresponding event has to be
sent to the task model simulation engine. We provide two complementary ways: on
the one hand a HTTP connection to connect external devices to the simulation engine
and on the other hand a “Wizard of Oz”-based technique with a human operator.

(1) We enhanced the simulation engine with an HTTP server to receive external
events from various sources like a smart environment. A HTTP request from the
smart environment contains the destined task and the event. The task is defined by the
test case, the task model, and the contained task. A smart environment is equipped
with sensors to detect the user behavior and to provide user support accordingly.
Therefore the fulfilled tasks are recognized within the normal execution of the envi-
ronment and subsequently used to trigger the task models executed within the simula-
tion engine. In the case that the smart environment deploys a different modelling
technique, the tasks have to be elicted and mapped to models for the simulation en-
gine. Events can only be sent to leaf tasks. The events “start”, “stop” and “crash” are
supported. A test case execution registers at the server to receive events. For every
incoming event, the corresponding test case is determined and the destined task model
and task instance. After sending the event the task model engine reacts accordingly
and changes the states of the destined task and the dependent tasks. The task event
trace is enhanced. If an event is currently prohibited, the event is captured as failed
within the event trace. The HTTP response contains optionally a success notification,
the resulting set of enabled tasks or the caused events as captured in the task event
trace. During the test execution the evaluation UI (figure 2) is concurrently updated to
visualize the current state of the environment.

(2) A “Wizard of Oz”-experiment can be conducted alternatively for smart envi-
ronments which are not directly connected to the simulation engine and therefore are

 Task Model-Based Usability Evaluation for Smart Environments 37

not able to deliver the recognized user interactions. An additional person observes the
interactions within the environment. This observer transfers the user behavior into the
simulation engine. The user interface depicted in figure 2 allows to manually trigger
the simulation engine. The advantage of this manual process is that an observing
person perceives even unexpected situations and copes with them. For example an
unforeseen task which was fulfilled by a user can be captured for later analysis. But in
a more complex environment the observer might be overstrained by the vast amount
of events, which have to be manually processed. Hence we recommend combining
both evaluation techniques. Most tasks are fulfilled according to the defined task
model and therefore can be captured with the HTTP connection between smart envi-
ronment and evaluation engine. Some tasks are unforeseeable and can only be cap-
tured by a human observer.

When executing a usability evaluation we basically distinguish between three types
of tasks according to the task model:

(a) A user fulfills a task which is currently allowed in the task model. The ob-
server triggers the task with the appropriate event in the simulation engine.

(b) A user fulfills a task which is contained within the task model, but currently
prohibited due to temporal relationships. In the evaluation UI we provide the
option “forced start” to capture the start of a task immediately. The evaluation
engine captures the event as failed, but doesn’t affect the task model state. A
“forced stop” ends a task in an analog way.

(c) A user fulfills a task which is not defined within the task model. The evalua-
tion UI provides the observer with the option to enter an additional task, which
is captured as failed event within the task event trace analog to (b).

The evaluation UI depicted in figure 2 can be deployed in different situations. In early
development stages it is used to simulate a walk through the task models and to check
their consistency. After the smart environment is set up, the HTTP connection to a
real environment triggers the evaluation UI and additional manual events can be sent.

5 Analyzing the Results of a Usability Evaluation

During the execution of a test case interactions are captured as task event trace. This
data can be analyzed at the same time or later after conducting a test. Conducting the
analysis in parallel to the test has the advantage that issues are recognized immedi-
ately offering the opportunity of giving support to test users. For instance if an issue is
already known from another test, but currently not fixed, it might be beneficial to
provide the users with help to save time and discover further issues.

An analysis is based on a single test case and an arbitrarily chosen number of test
case executions of the same test case. Hence an analysis can examine both a single
test execution in detail and several different executions in comparison to each other.
Comparing several executions allows varying a specific parameter for detailed
evaluation while preserving the other parameters. Examples are the evaluation of
differences of specific user groups (e.g. novice vs. advanced users), under certain
context influences (e.g. light intensity, furniture arrangement) or alternative imple-
mentations of the smart environment. The task models describe the behavior of people

38 S. Propp, G. Buchholz, and P. Forbrig

and the potential usage of the devices on an abstract level, leaving out the implemen-
tation details. Different implementations can satisfy the specified task models and a
comparison identifies individual strengths and weaknesses. We suggest employing
some expert users to carry out the test case first and compare their task performances
to other users’.

Figure 3 continues the example from section 4 and depicts the analysis in parallel
to the evaluation. The left hand side contains the evaluation of a test case, while the
right hand side shows a visualization of the current evaluation progress.

Fig. 3. Analysis of a Usability Test Case

The gantt chart depicts the interactions of the ongoing meeting according to a time-
line. The completed tasks are grouped by their task model. A task model is printed in
bold case and the duration of executions of the containing tasks is depicted as a green
bar. The already started leaf tasks of the task model are depicted as blue bars to indi-
cate their duration. The different task models are executed concurrently.

The captured task event trace serves as basis to derive the input data for the analy-
sis and visualization. The leaf tasks executed by users are extracted and the success-
fully as well as the failed events are taken into account. Failed event executions
reflect a conflict between user behavior and task model, because a user in a smart
environment can always choose freely which task to execute. For instance the user
can suddenly skip the presentation because of a headache even if the task model
doesn’t consider this exception. Therefore the evaluation UI allows the observing
expert to capture this unexpected task, while the event execution is marked as failed
according to the specified task model. Unexpected tasks are depicted as a red bar. A
bar depicts the duration of the task execution, while a task is in the state “running”.
Therefore the events “start”, “stop”, “crash”, “suspend” and “resume” are analyzed.

 Task Model-Based Usability Evaluation for Smart Environments 39

Depending on the individual interest of the usability evaluation the captured data
can be filtered and aggregated. Filter options comprise the filtering according to the
minimum and maximum duration of tasks, the start and end time, the involved users
and devices. Furthermore data is prepared by aggregation. If there is a huge amount of
executed tasks, which are very short and represent a high level of detail, a sequence of
leaf tasks with the same parent node within the task model can be aggregated to a
higher abstraction level.

An additional normalization step is applied when comparing multiple event traces
of different evaluation executions. When different persons fulfill the same task and
differ in the needed time, this might be an indicator for a usability issue. But in some
cases we faced the problem that the normal working speed was greatly varying and
there was no system related issue, e.g. if one tester needs significantly more time for
changing slides forth and back with the presenting device. We overcome this prob-
lem by normalization of the durations of the task sequence, which proceeds as
follows: the expert chooses a task and a certain user. The according time captured
during observation is compared to the other users’ and for each user is a factor de-
rived. The factor is applied to all tasks of the respective user. As a result the duration
of slower users is stretched and the duration of faster users is compressed. We sug-
gest designing a short calibration task and appending it in front of the evaluation. As
an alternative all overall durations can be set to the same duration, to compare all
users at a 100% basis.

Furthermore timelines are provided to compare different test case executions at a
glance. Parallel lanes depict different executions of the same test case with different
persons and in addition to [4] the normalization can be applied.

6 Conclusion

In this paper we presented a usability evaluation approach for the task model-based
evaluation of interactive systems, particularly for smart environments. Within a smart
environment a task can be accomplished cooperatively by a number of users, while
changing the devices during executing a task. For instance a user can begin a task on a
mobile phone with speech input and fulfill the task on a laptop with keyboard. An
interaction trace based only on physical events alone is in this case not sufficient,
because it is difficult to compare voice and keyboard input. Therefore we enhanced
the physical interaction trace with device independent information on the task level.
We defined usability test cases based on task models, to capture task event traces. A
subsequent analysis and visualization allows the identification of usability issues. For
interactive systems, which are designed with task models, the identified issues within
the task models are directly related to the design model. Hence the problem can be
tracked back to the cause within the development stage.

To provide tool support we enhanced an existing task model framework with us-
ability evaluation facilities. Hence the evaluation is directly integrated into the model-
based development process and allows rapid usability testing at different development
stages.

40 S. Propp, G. Buchholz, and P. Forbrig

Future research avenues comprise a case study to evaluate our technique within our
smart environment. This will help us to discover strengths and weaknesses based on
real data.

Acknowledgments. The work of the first author was supported by a grant of the
German National Research Foundation (DFG), Graduate School 1424.

References

1. Buchholz, G., Engel, J., Märtin, C., Propp, S.: Model-Based Usability Evaluation - Evalua-
tion of Tool Support. In: HCII 2007, pp. 1043–1052 (2007)

2. Feuerstack, S., Blumendorf, M., Albayrak, S.: Prototyping of Multimodal Interactions for
Smart Environments based on Task Models. In: AMI 2007 Workshop on Model-Driven
Software Engineering, Darmstadt, Germany (2007)

3. Hilbert, D., Redmiles, D.: Extracting Usability Information from User Interface Events.
ACM Computing Surveys 32(4), 384–421 (2000)

4. Malý, I., Slavík, P.: Towards Visual Analysis of Usability Test Logs. In: Coninx, K.,
Luyten, K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 25–32.
Springer, Heidelberg (2007)

5. Mori, G., Paternó, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE Trans. Softw. Eng. 28, 797–813 (2002)

6. Paternò, F.: Model-Based Design and Evaluation of interactive applications. Springer,
Heidelberg (1999)

7. Paternò, F., Russino, A., Santoro, C.: Remote evaluation of Mobile Applications. In:
Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp.
155–168. Springer, Heidelberg (2007)

8. Reichart, D., Forbrig, P., Dittmar, A.: Task Models as Basis for Requirements Engineering
and Software Execution. In: Proc. of. TAMODIA, Prague, pp. 51–58 (2004) ISBN 1-
59593-000-0

9. Rubin, J.: Handbook of usability testing. In: Hudson, T. (ed.) Wiley technical communica-
tion library (1994)

10. Sinnig, D., Gaffar, A., Reichart, D., Forbrig, P., Seffah, A.: Patterns in Model-Based Engi-
neering. In: Proceedings of CADUI 2004, Madeira (2004)

11. Sinnig, D., Wurdel, M., Forbrig, P., Chalin, P., Khendek, F.: Practical Extensions for Task
Models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 42–55. Springer, Heidelberg (2007)

12. Trapp, M., Schmettow, M.: Consistency in use through Model based User Interface Devel-
opment. In: Trapp, M., Schmettow, M. (eds.) Workshop at CHI 2006, Montreal, Canada
(2006)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 41–57, 2008.
© IFIP International Federation for Information Processing 2008

From Task to Agent-Oriented Meta-models, and Back
Again

Steve Goschnick, Sandrine Balbo, and Liz Sonenberg

Interaction Design Group, Department of Information Systems, University of Melbourne, 3010,
Australia

{stevenbg,sandrine,l.sonenberg}@unimelb.edu.au

Abstract. In the research discussed here, in addition to extracting meta-models
from numerous existing Agent architectures and frameworks, we looked at sev-
eral Task meta-models, with the aim of creating a more comprehensive Agent
meta-model with respect to the analysis, design and development of computer
games. From the agent-oriented perspective gained by examining the resultant
extensive agent meta-model – named ShaMAN – we then revisit the Task
Analysis research domain, and consider what benefits Task Analysis and Mod-
elling may draw from the Agent-oriented paradigm.

Keywords: Agent-oriented, Task Models, Multi-Agent Systems, Meta-model,
Agent Meta-models, Task Meta-models, Software Engineering, Computer game
development, Agents in computer games.

1 Introduction

Agent-oriented (AO) architectures and methodologies are the main interest area of the
research outlined here, with a focus on the application domain of computer games. In
addition to extracting meta-models from numerous existing Agent architectures and
frameworks (not covered in this paper), we looked at several Task meta-models, all
with the aim of creating a more comprehensive Agent meta-model with respect to the
analysis, design and development of computer games. From the agent-oriented per-
spective gained by examining the resultant extensive agent meta-model – named
ShaMAN – we revisit the Task Analysis research domain, and consider what benefits
Task Analysis and Modelling may draw from the Agent-oriented paradigm.

1.1 Motivation for Task Models in AO Meta-model Research

A modern sophisticated computer game can be characterised as a mixed-initiative
multi-agent system – meaning that interaction happens between the human us-
ers/players, and various game-based synthetic characters, which have a high degree of
proactive autonomous behaviour. In addition to being multi-agent in nature, such
games also involve multiple users, playing alone or in guilds (teams). AO researchers
have predominantly been intent on putting intelligence into artefacts (e.g. trading sys-
tems, robots, simulations, etc.), with only a small percentage concerned with mixed-
initiative human-agent systems [9,11,12], such as computer games.

42 S. Goschnick, S. Balbo, and L. Sonenberg

The specification of goals in agent systems usually begins in analysis with the
identification of high-level, motivational goals. Lower level tasks and actions become
a focus of endeavour in the AO SDLC when an agent system is being implemented.

Task Analysis (TA) began with a keystroke-level interest in the things that humans
do with technology. While the purpose of TA is to understand the user’s activity in
the context of the whole human-machine system for either an existing or a future sys-
tem [6], a task model helps the analyst observe, think, record and communicate the
user’s task activity [18].

Fig. 1. Meta-model of GAIA V1 in UML, with models superimposed

In a strong sense TA and AO began at the opposite ends of the design spectrum
with very different agendas, one bottom-up and people-oriented, the other top-down
AI-oriented. While there are several task meta-models that draw from a cognitive top-
down perspective, several of which we draw upon in this research – e.g. HTA, TWO,
and TKS – there are few agent meta-models that include activities down at the user
keystroke level. It seems intuitively obvious that TA ought to have lessons for AO,
particularly in mixed-initiate AO systems, including computer games.

1.2 Meta-models

Much of the research discussed here is centred around meta-models expressed in
either: UML class diagram notation, or Entity Relation (ER) notation [3], the adoption
of which requires a little explanation up front.

Modelling in a Visual Notation, Comparing Meta-models in UML. In agent-
oriented research and in computing in general, modelling expressed in some form of
visual representation is used to communicate, build and document complex systems
and artifacts. In complex systems no single diagram type can most effectively express
and communicate all of the concepts and ideas encountered – a particular notation is

 From Task to Agent-Oriented Meta-models, and Back Again 43

designed to best encapsulate one or two aspects of the complexity. The UML
language for example has no fewer than 13 diagram types from which to choose a
representation that best suits a particular aspect and phase of an object-oriented (OO)
system or application. Meta-models expressed in UML class diagrams are now com-
monly used in both the AO [2,13,14] and OO [20] research domains: to represent
state-holding entities; to communicate base ideas; and as a useful means to compare
different agent systems or architectures [7,14]. To facilitate the process of compari-
son, it is useful to represent as many aspects of an architecture as possible in a single
meta-model diagram.

In the well-known GAIA agent-oriented architecture [28,29] there are distinct
models for: Roles, Interaction, Agent, Service and Acquaintances – several with
unique notations. However, figure 1 is a single condensed meta-model of GAIA – the
dotted lines superimposed over the entities, representing the Roles, Interaction, Agent,
Service and Acquaintances models, each a subset of the meta-model.

Agent Concepts. Given that there is no universally accepted single meta-model for
AO systems at present, when we first looked to agent concepts and architectures with
computer games in mind, we examined the meta-models of several well-known agent
architectures and methodologies (AAII [19], GAIA [28,29], Tropos [2,13],
TAO/MAS-ML [5], Prometheus [21]) and several that are less well known (ROAD-
MAP [16], ShadowBoard [10,11], GoalNet [22]), to explore the commonalities and
differences between them. In addition, given our identification of a gap in the AO
paradigm down at the input device event level, we included in our study several well-
known meta-models from the Task Modelling field. For space reasons this paper
discusses the Task meta-models, but not the agent meta-models.

Fig. 2. HTA Task Meta-model in UML notation

Cognitive Task Meta-models Examined. According to Annett [1], HTA is best
regarded as “a generic approach to the investigation of problems of human perform-
ance within complex, goal-directed control systems”. HTA focused on system goals
and plans, where other approaches at the time focused on observable aspects of per-
formance. In contrast to a behaviouralist view, the cognitive approach taken by HTA
envisaged human behaviour as goal-directed and controlled by feedback. HTA Tasks
describe lists of actions needed to achieve a particular goal state. Goals may have sub-
goals in a hierarchical fashion. Tasks represent specific user actions in a goal-directed
activity. They can be hierarchical with sub-tasks linked to sub-goals (see decomposi-
tion relationships in figure 2). Plans are like recipes to achieve a task, controlling
sequence and timing.

The Task World Ontology (TWO) model from Groupware Task Analysis (GTA)
[26,27], is a generic task analysis model that includes as its primary entities: Event,

44 S. Goschnick, S. Balbo, and L. Sonenberg

Task, Goal, Agent, Role and Object, all of which except Object are like-named enti-
ties of primary interest to most Agent meta-modellers. In addition, TWO includes
several many-to-many relationships, including Responsible and Plays.

Fig. 3. TWO Task World Ontology model in UML notation (adapted from [27])

The GTA is of specific interest to us, as it stemmed from task analysis in the Com-
puter Supported Cooperative Work (CSCW) field, thereby involving multiple users
and complex contexts.

Fig. 4. The Task Knowledge Structure (TKS) Meta-model in UML

Johnson and Johnson [15] developed the Task Knowledge Structure (TKS) model
to support the design phase of the SDLC. It details task hierarchies, objects hierar-
chies (the decomposition relationships in figure 4 represent hierarchies – e.g. sub-
tasks of a task, recursively) and knowledge structures. It aimed to represent the
knowledge a user has stored in their head regarding tasks. The user is represented by
an Agent in the model. The Role/s that a user takes on, each have Responsibilities that
are manifested in a set of Tasks to be done.

 From Task to Agent-Oriented Meta-models, and Back Again 45

Additionally, we looked at GOMS [18] and the DIANE+ [25] task modelling lan-
guage, which will not be introduced here for brevity sake.

Overview. In Section 2 we introduce the ShaMAN agent meta-model proper. In order
to explain the entities in figure 5 efficiently, we present several groupings of the enti-
ties from the meta-model in detail, and then describe the flexibility they bring to
building applications using the model. In Section 3 we compare some concepts from
the ShaMAN meta-model with the Task meta-models investigated. In Section 4 we
highlight some challenges that others have raised for Task Modelling. In Section 5 we
describe how Task modeling may be enriched by AO concepts, addressing some of
those challenges highlighted in Section 4.

2 The ShaMAN Meta-model

At a fundamental level, an agent meta-model is an entity model, thereby abiding by
all the conventions of a notation that an application model adheres to. In this research,
in a bottom-up design manner, we applied normalisation [17] to a superset of the
agent concepts found in the agent meta-models (AAII, Gaia, Roadmap, GoalNet,
TAO, Tropos, ShadowBoard and Prometheus), in several task meta-models (HTA,
TKS, GOMS and the Task World Ontology (TWO) from Groupware Task Analysis
(GTA) together with a few concepts needed by computer games, and arrived at a
normalised agent meta-model named ShaMAN, presented in figure 5. (Nb. The nor-
malisation process is not documented here for space reasons).

As a normalised model ShaMAN is both: flexible to ongoing requirements upon
the meta-model itself (should it need future enhancements); and is a model least sus-
ceptible to anomalies arising from changes of state with respect to the existing con-
cepts represented in it. The following sections describe the main sub-sections of the
ShaMAN meta-model in more detail.

2.1 Locales for Computer Games

The domain of applications of interest to us in this research is computer games, which
invariably interact with the player through the usage of a human-machine interface,
for example a screen of one size or another. The Locale sub-section of the ShaMAN
model lets us model the visual metaphors and the screen interaction between
player/user and screen characters of a game, right in the AO model itself. It is an
abstraction that is suitable for games and other rich media applications, without mod-
elling specific widgets in a UI library. While several of the agent meta-models in-
vestigated do have constructs for the agent environment, none specifically model the
computer screen as the primary representation of the environment to the user.

In ShaMAN, this screen representation of a sub-section of the agent’s environ-
ment is called a Locale in homage to Fitzpatrick’s [8] definition of a Locale as a gen-
eralised abstract representation of where members of a Social World [23] inhabit and
interact. Figure 6 represents that sub-section of the ShaMAN meta-model that repre-
sents Locales within games. Note: the simplified crows-foot (zero, one or many) ER
notation for cardinality, is used in these detailed figures of sub-sections of the meta-
model, to increase the general readability.

46 S. Goschnick, S. Balbo, and L. Sonenberg

F
ig

. 5
. T

he
 S

ha
M

A
N

 A
ge

nt
 M

et
a-

m
od

el

 From Task to Agent-Oriented Meta-models, and Back Again 47

The Locale entity may have sub-locales thereby allowing hierarchies of Locales.
Locales are a generic concept representing some spatial construct presentable on the
screen, e.g. rooms, outdoor areas, sections of a board-game, etc. - suitably broad
enough for novel game interfaces. By way of describing the entities in figure 6, we
will refer to the game screen in figure 7 as a concrete example of Locale.

The screen depicts the office of the player’s character within the game BranchOut,
and that room is represented as a Locale in ShaMAN. The HotSpot entity represents
any area on the screen that is interactive, in the sense that whenever the user either
clicks or passes over that area on the screen (or if a HotSpot has the focus, from a
keystroke point-of-view), certain interaction between the user and the game may take
place – for example clicking on the filing cabinet draw opens a window that displays
the contents of the draw. HotSpots are a generic concept for such screens, whether the
game presents a 2D, 3D or something abstract, the interaction with a standard display
is 2D and involves area. HotSpot has two relationships with Locale, one named to and
the other named from – enabling navigation between Locales.

Fig. 6. The Locale sub-section of the meta-model

A HotSpot may also link to an OnSiteResource entity. These are Resources that
live in the Resource entity which may involve a hierarchy of Resources. Resources
are typically programmed entities that are not Agents in their conception nor devel-
opment, but they may also represent real objects in the real world. The digital clock
on the wall in figure 7 is a fully-functioning clock object, and when clicked-on, dis-
plays a fuller interface to the digital clock Resource. OnSiteResource is an associate
entity – a representation that allows the same Resource to be used in multiple Locales,
e.g. a clock in many rooms drawing upon the same programmed code.

A HotSpot may also have a relationship with the entity LinkCondition, which in
turn links to a Goal via a relationship called has-hurdle. This allows the game devel-
oper to enforce conditions to be met: e.g. before the player may advance to another
Locale, or before they may use a particular Resource.

Locale is also directly linked to two other entities: Attendee and Inhabitant. Atten-
dee is an associative entity that records all occupants in a particular Locale over time,
retaining a record of when agents (or human avatars) entered the Locale and when
they left it, if they are no longer present. It is linked to the agent’s Role during that

48 S. Goschnick, S. Balbo, and L. Sonenberg

Fig. 7. Depiction of a Locale in a Computer Game being developed using ShaMAN

occupation via AgentRole, and also to the SocialWorld they were engaged in when
they did so. This history aspect of the Attendee is usefully in providing and recording
a back-story for any particular agent-oriented game character – a necessary aspect of
realistic game creation. In contrast to Attendee, the Inhabitant entity represents the
current occupants of the Locale. It has a direct link to the Agent entity, and is used
when the overhead of SocialWorlds and agent Roles are not a concern.

2.2 Communication Via SpeechFlow

Some computer games have large numbers of agents and very often these agents are
categorised by the roles they serve. When it comes to communication between agents,
there is the need for communication at several levels: one-to-one; one-to-a-group of
agents in a particular Social World; one to all agents filling a specific role (e.g. Cap-
tain). Note: Human players (human-in-the-loop) are considered to be agents, from the
system’s point of view. The SpeechFlow sub-section of the ShaMAN meta-model as
portrayed in figure 8, addresses these three required levels of communication in
gameplay. In addition, it addresses Events from non-agent Resources.

The SpeechFlow entity is at the heart of all interaction within ShaMAN – including
events generated by Resources. An agent communicates to other agents or to humans-
in-the-loop by generating an instance of SpeechFlow. It does so while acting in some
Role, working upon some Goal associated with that Role. The entity that represents
the instance of those two things for a particular agent is AgentRoleGoal. While the
AgentRoleGoal instance may generate many SpeechFlow instances, each one of them
is linked to just one ActionType, which are in turn determined by a particular agent
communication language (ACL).

 From Task to Agent-Oriented Meta-models, and Back Again 49

Fig. 8. Message flow within ShaMAN

While a particular instance of AgentRoleGoal is the source of any given instance
of SpeechFlow it can have one or more of three possible receivers: AgentRole is a
given individual recipient agent while acting in a particular role; SocialWorld means
that the message will be broadcast to the whole membership of a social world how-
ever many members it has (via Member – see figures 5 or 10); or, SocialRole which
is a particular role common to many SocialWorlds, such as ‘Treasurer’, or, a game
example such as ‘Captain’ – e.g. All ‘Captains’ of SocialWorld’s of type ‘Ship’. The
three receives relationships are all zero-or-one to many, because they may be either
alternative or parallel receivers of a specific message.

Non-agent Events come from Resources (including from UI widgets), and are per-
ceived by Agents through AgentRole as Percepts.

2.3 The Goals, Roles, Responsibilities and Tasks of Agents

Computer games often have the need for intelligent, intentional, proactive and
autonomous game characters that interact both with the human players and with other
characters in a game. These properties are the harbingers of AO systems, and the sub-
group of entities from ShaMAN meta-model in figure 9, represent the entities that
appear most frequently (but not consistently) in one form or another, in many of the
agent meta-models that we examined.

Figure 9 shows four entities in this sub-model of ShaMAN that have hierarchies of
sub-elements of the same type, namely: Goal, Role, Agent and Task. The associate
entity between Goal and Role called Responsibility represents the responsibilities of a
particular Role. A given Responsibility instance is fulfilled via an instance in the
AgentRoleGoal entity, by being enacted or performed by an Agent that takes on
that Role. An Agent may have many Roles and the AgentRole entity represents this
multiplicity.

In task modeling, a hierarchy of related tasks is performed to achieve a goal that
sits at the head (or root) of a task hierarchy. In ShaMAN the AgentRoleGoal entity
represents such a root Goal (via Responsibility), while such a task hierarchy is repre-
sented by Task together with the self-relationship (a unary relationship) called
sub-task.

The completion of a Task may spark a SpeechAct. SpeechActs (zero, one or many
of them) may also be generated directly by the AgentRoleGoal entity. Note that
SpeechAct is related to the ActionType and SpeechFlow entities that were depicted
and described earlier in Section 2.2.

50 S. Goschnick, S. Balbo, and L. Sonenberg

Fig. 9. Goals, Roles and Tasks in ShaMAN

Goals within ShaMAN are expressed as GoalX(term1, term2, … termN), like a
predicate in the predicate logic sense. I.e. By setting one or more of the terms to a
constant, and leaving one or more of the terms as variables, a logic language such as
Prolog will accept such a predicate as a goal, and will set about solving it, without a
formal plan. Even though this predicate format for goals conforms with logic lan-
guages, it is also an acceptable way to specify methods capable of achieving goals in
imperative languages. Likewise, it is an equally acceptable format for expressing
RPC-oriented (Remote Procedure Call) web services (WS) and furthermore, database
queries in a Query-by-Example format.

In ShaMAN a Term can be a simple variable (or a literal/constant) but it need not
be – it may also include constraints. E.g. While the variable Temperature is an accept-
able term within a ShaMAN goal, the constraint: during(12 < Temperature < 100) is
also acceptable as a term. A term expressed as such is an invariant constraint, mean-
ing that it remains in force for the life of the goal to which it is associated. A second
type of constraint can be expressed in a ShaMAN term as follows: before(12 < Tem-
perature < 100) – which means that the constraint must hold before the goal can be
begin to be solved. An example of a third form of constraint definition is af-
ter(Tempature = 100), representing a constraint that exists following a successful
completion of the goal in question. This use of keywords before, during and after
within constraints as temporal directives, was proposed by Goschnick & Sterling [12].

Goals will often have sub-goals in a hierarchy of goals to be achieved. One such
sub-goal will be associated with a matching sub-role, and an agent will be assigned
via an instance of the AgentRole entity. During execution of a ShaMAN application,
sub-agents can be called upon in a downward direction via the need to achieve the
sub-goals of parent goals, which is termed goal-driven execution. Or, they can be
called upon from below, where a SpeechAct has been sent from further down the sub-
agent chain, and the upper level goal has to be solved or rerun, termed data-driven
execution. Data-driven execution often eventuates when a sub-agent retrieves new
information from an external service such as a Web service, or from another agent
across agent hierarchies or across Social Worlds. I.e. Even though the groupings of
agents within ShaMAN are generally organized in hierarchies, communication
and hence cooperation can happen between agents across different agent/sub-agent
hierarchies.

 From Task to Agent-Oriented Meta-models, and Back Again 51

2.4 Social Worlds in ShaMAN

Individual Agents can be members of one or more SocialWorlds. Their membership
begins with an instance in the Member entity. See figure 10 below. Agents are related
to the Member entity via the one-to-many relationship involved-as between their entry
in the AgentRole entity and Member, while a SocialWorld includes multiple agents
represented in Member via a one-to-many relationship.

Agents can fill multiple Roles via the AgentRole entity. The Roles that are avail-
able within a particular SocialWorld are listed as instances of the SocialRole entity,
which sits between Role and SocialWorld. SocialRole is a useful entity in a number of
ways: it can be used to specify all the roles that make up a SocialWorld in the design
phase, before any Agents become members; and, as we saw in Section 2.2, at execu-
tion time SpeechFlow messages can simply be broadcast to all agents in a Social-
World that occupy a particular SocialRole such as ‘Captain’.

Fig. 10. SocialWorlds within ShaMAN

2.5 Knowledge Tree and Resources

The Knowledge Tree part of ShaMAN (see figure 11) consists of a hierarchy of con-
cepts in the form of an ontology (the entity is called Ontology), but which is then
related to lists of Resources (via the ResourceList entity) at each level in the ontology.
In the functioning beta instantiated system based on ShaMAN, the Ontology is repre-
sented as a file directory structure and the resource list includes a multitude of file
types, including image and video files used in a game, through to executable Java
objects, such as the Filing Cabinet displayed in figure 7 above and discussed in Sec-
tion 2.1. It differs from a conventional file directory structure in that any Resource
can appear in multiple ResourceLists via the appears-in relationship between them.

The Resource hierarchy can store any group of objects or resources that are natu-
rally composed in a hierarchical form. For example, a computer consists of mother-
board, hard drive/s, memory cards, etc. – which could be logically represented in the
Resource tree of ShaMAN. Similarly, a standard GUI screen is a hierarchy of on-
screen components/widgets, that can be represented as a part of a Resource hierarchy
used by a Locale that represents that screen, and linked by the OnSiteResource entity
depicted at the bottom of figure 6.

52 S. Goschnick, S. Balbo, and L. Sonenberg

Fig. 11. The ShaMAN Knowledge Tree

3 A Comparison of ShaMAN with Task Meta-models

Our motivation for collecting and comparing agent meta-models was for their agent
concepts as the primary input into a normalisation process, to arrive at a well-formed
agent meta-model. So our initial interest in the comparison was analytic only.

Table 1 below is a comparative format representing the original set of agent con-
cepts from the Task meta-models that were used as input into the meta-model
normalisation process in deriving ShaMAN (see first table column). Nb. There is a
similar comparitive table of ShaMAN concepts against the agent meta-models used as
input, but it is not in this paper for space reasons.

While a particular comparison in the table, such as ShaMAN’s Goal(tree) and
TWO’s Goal(tree) approximately equates the concepts, the comparison is a gross
simplification. A TWO Goal is different from a ShaMAN Goal, in that a TWO Task
has a Goal as an attribute, while a ShaMAN Goal leads to a number of Tasks. Some-
times the table comparison is close in meaning, other times it is close in name but
distant in meaning, and sometimes there is wide variance in both name and the se-
mantics. However, such a table is useful to begin the cross-model discussion.

What is common to ShaMAN and all the Task models examined is that task repre-
sents a unit of work. An analogy that we will use here, is a model-neutral concept -
the programmed Method (Procedure) within an imperative language. We will
distinguish between the Method Signature (its name plus parameters passed), the
Method Body of the method (the logic that can resolve the goal), and an Executing
Method. An Executing Method represents a task underway. In ShaMAN a method
signature is the equivalent to a Goal, where the terms can equate to parameters. As
mentioned earlier, in Section 2.3 this predicate format for goals is not only an accept-
able way to specify method signatures capable of achieving goals in imperative
languages, it is equally acceptable for expressing RPC web services (WS), certain
database queries and other languages.

HTA does not attempt to represent cognitive systems (as BDI, ShaMAN and other
MAS architectures do), but it does allow a functional analysis of goals, sub-goals,
tasks, sub-tasks and plans. As with the ShaMAN Goal the HTA Goal is analogous to a
Method Signature, while the HTA Plan is analogous to a Method Body – the specific
logical recipe for achieving the goal. The Method Body may call upon other Methods

 From Task to Agent-Oriented Meta-models, and Back Again 53

Table 1. ShaMAN meta-model comparison against selected Task Meta-models

ShaMAN Hierarchical
Task Analysis
(HTA)

Task Knowledge
Structure (TKS)

GOMS - Goals,
Operators, Meth-
ods, Selection

Task World
Ontology (TWO)

DIANE+

Goal (tree) Goal (tree) Goal (tree) Goals(tree), Meth-
ods

Goal (tree) Goal, Procedure

Role (tree) Role Role (tree)

Responsibility Responsibility (task) 2 Is-responsible 2

Agent (tree) Plan (tree) Agent, Plan Methods; Selection
rules

Agent Actor; Logical rela-
tionships

AgentRole Playing 2 Plays 2

Percept

Event Event

SocialWorld(tree)

SocialRole

Member

Item

AgentRoleGoal Operators Performed-by 2

Task Task (tree) Task (tree) Task (tree) Temporal Relation-
ships; Iteration

SpeechAct Procedure

ActionType

SpeechFlow

Term Data

Concept

Association

Resource (tree) Object Object (tree) Object, Widget

AgentResource Manipulate 2

Ontology (tree)

List

Locale (tree)

Attendee

Inhabitant

OnSiteResource

HotSpot

LinkCondition

R,A,D,I,T,Rt 1 R,A R,A,D A,D,T1 R,A,D R,A,D,I2

Note 1: R,A,D,I,T,Rt: Requirements, Analysis, Design, Implementation, Testing, Runtime.
Note 2: In the Task Meta-model, this is represented as a relationship rather than an entity.

(by Method Signature). I.e. The logic in a plan hierarchy can reference goals. So, a
goal hierarchy can be specified without any procedural logic, although logical AND,
ORs and XORs, are commonly used between predicates, as is the case in ShaMAN
goal hierarchies. In application, HTA relies heavily on the feedback loop to: monitor
progress of goals; to detect errors and reactive events, to call upon alternative plans in
the event of errors and reactive events, In fact, the HTA feedback loop is very similar
in principle to the functional event loop in a BDI agent.

The TWO version of a Task is two-fold: a unit task is the lowest level task that
people want to consider in their work, while a basic task is system-oriented such as a
single command in an applicaion. Tasks may be further subdivided into actions. The
TWO Role is similar to that in ShaMAN, although it is seen as a collection of Tasks
for which it is Responsible. Both have Agents playing/fulfilling Roles. TWO Objects
are not OO-like, but are very similar to ShaMAN Resources in that they can be real

54 S. Goschnick, S. Balbo, and L. Sonenberg

objects or abstract objects that exist in the knowledge context of an agent. What can
be done with a TWO Object is specified by a list of actions. TWO Objects are
strongly related to TWO Tasks, via the uses relationship.

The TKS Goal is very agent-like, in that it represents the goals in a human’s head.
Agents are synthetic intelligence with meta-models often mimicking a human psy-
chology in the quest to achieve some level of intelligence. The concept of Role and
Responsibility are directly equivalent to that used in several agent meta-models, in-
cluding ShaMAN. However, in ShaMAN, Responsibility can be constructed at the
analysis and design, as it is an associative entity between Role and Goal, rather than
between Role and Task. Where the TKS Task manipulates TKS Objects, the Sha-
MAN Agent (which performs Tasks via AgentRoleGoal) has access to ShaMAN
Resources (stored in a Knowledge tree), via the AgentResource associative entity,
and so on. In the full study we do examine each twin comparison of each concept
in detail.

4 Some Challenges for Task Analysis and Modelling

In Chapter 30, the final chapter of the Task Analysis handbook [6] editors Diaper and
Stanton consider the future of Task Analysis. They make a case for the removal of
two substantial concepts within Task Analysis, namely: Functionality and Goals:

“It (functionality) is a concept only applied to computer systems and not to the
other main type of agents in HCI and task analysis, people (i.e., we do not usually
discuss the functionality of a person, although we might discuss the functionality of
an abstract role). The concept of functionality as what application software is capable
of doing to transform its inputs into its outputs may well have been a reasonable one
in computing’s infancy, when programs were small and did very little, but today
computer systems, particularly when networked and/or involving some artificial intel-
ligence (AI), have outgrown the utility of the functionality concept. We believe that
future computer systems will become further empowered as agents and that either we
should happily apply the functionality concept to both human and nonhuman agents
or drop it completely and use the same concepts we use for people when addressing
the behavior of complex computer systems.” (Note: the bolding is added).

They discuss the use of goal in TA: “What are goals for in task analysis? Chapter 1
identifies two roles for goals in task analysis: to motivate behavior and to facilitate
abstraction away from specific tasks and thus promote device independence.” Then
outline ways to achieve those two things without the use of goals at all (using of at-
tentional mechanisms), and conclude that goals ought to be dropped from TA.

“On this view, people, including task analysts, merely use goals as a post hoc ex-
planation of system performance. Furthermore, attention, both selective and divided
(see chaps. 14 and 15), is an existing cognitive psychological mechanism that controls
the allocation of the massive, but still ultimately limited, mental information-
processing resources, and we think that attentional mechanisms can entirely replace
the motivational role of goals ... we suspect that goals in task analysis are similarly
post hoc, whether elicited from task performers or inferred in some other way by task
analysts. That is, we believe that goals are not part of the psychology that causes be-
havior but are used to explain it.”

 From Task to Agent-Oriented Meta-models, and Back Again 55

Both of these calls upon TA - to recede from the current inclusion of motivational
Goals, and from the modelling of the ever growing functionality of complex modern
computer applications - are one response to growing complexity and to interdiscipli-
nary influences upon a discipline. Another response is to embrace and expand the
field, inspired by the incursions of and into other disciplines and domains.

5 Enriching Task Modelling with Some AO Concepts

Today’s users are multi-tasking much of the time and often have their computer sys-
tems running 24/7. The use of inputs and outputs in the earlier quotation highlights a
different view of computational systems within the AO paradigm: Agents have per-
cepts rather than inputs, and they act rather than just having an output - this underlines
their perpetual operation in a task world or environment. They are designed to run
24/7, as are many current day mainstream applications, for example, an email client.

If AO concepts could influence TA with regard to the first recommended change to
TA by Diaper and Stanton, it would advocate modelling of both users and
agents – TKS and TWO have gone down this path to some degree. The AO approach
is compliant with the idea of applying functionality concepts to both humans and
agents – particularly within mixed-initiative systems. E.g. In ShaMAN an individual
human is modelled as a hierarchy of sub-agents – a ShadowBoard agent - together
representing the myriad of roles an individual user has [10]. Also note, that sub-agents
in a multi-agent system are often much less than fully autonomous entities
[2,5,7,10,11,13,14,22,24], and so functionality can and does get broken down into
small definable units in these outwardly complex AI systems.

In response to the call to remove motivational goals, an Agent analyst would point
out, that to restrict an agent to react to events only, in an attentional manner, would
render it a simple reactive agent - the earliest form of agent architectures. Reactive
agents were superseded by deliberative architectures, which, in addition to being
reactive, are also proactive in pursuing their own goals, including motivational goals.

If, for example, you take either the TWO or the TKS task meta-model in figures 4
and 5, replace the agent entity with the SocialWorld sub-model in figure 10 above,
replace the Object entity with the Knowledge Tree sub-model in figure 11, replace the
Event entity with the MessageFlow sub-model in figure 8 – the result is a much ex-
panded meta-model, which is as much an Agent meta-model as it is a Task meta-
model. While it is large, it is also now capable of representing multiple users together
with multiple agents, complex memberships and complex messaging, rich knowledge
representations and complex goal, role and responsibility interrelationships.

The futures of Task Analysis and Task Modelling and the AO paradigm have much
in common. AO researchers are predominantly intent on putting intelligence into
artefacts (e.g. trading systems, robots, simulations, etc.), with only a small per-
centage of their number currently concerned with mixed-initiative human-agent sys-
tems. Task analysts and modellers are focused on people more than artefacts, and are
therefore well-positioned and more inclined to embrace the modelling of people in
mixed initiative human-agent systems, of which computer games are but demonstra-
tive of the possibilities such systems hold for people in all walks of life.

56 S. Goschnick, S. Balbo, and L. Sonenberg

References

1. Annet, J.: Hierarchical Task Analysis. In: Diaper, D., Stanton, N. (eds.) The Handbook of
Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates, Mahwah
(2004)

2. Bresciani, P., Perini, A., Giorgini, P., Guinchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. In: AAMAS 2004, pp. 203–236 (2004)

3. Chen, P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM Transac-
tions on Database Systems 1, 9–36 (1976)

4. Cossentino, M.: Different perspectives in designing multi-agent systems. In: AgeS 2002,
workshop at NodE 2002, Erfurt, Germany (2002)

5. Da Silva, V.T., De Lucena, C.J.P.: From a Conceptual Framework for Agents and Objects
to a Multi-Agent System Modeling Language. In: Autonomous Agents and Multi-Agent
Systems, vol. 9, pp. 145–189. Kluwer, The Netherlands (2004)

6. Diaper, D., Stanton, N. (eds.): The Handbook of Task Analysis for Human-Computer In-
teraction. Lawrence Erlbaum Associates, Mahwah (2004)

7. Fischer, K., Hahn, C., Madrigal-Mora, C.: Agent-oriented software engineering: a model-
driven approach. International Journal of Agent-Oriented Software Engineering 1(3/4),
334–369 (2007)

8. Fitzpatrick, G.: The Locales Framework: Understanding and Designing for Wicked Prob-
lems. Kluwer Academic Publications, London (2003)

9. Fleming, M., Cohen, R.A.: User Modeling Approach to Determining System Initiative in
Mixed Initiative AI Systems. In: 6th International Conference on User Modeling (1997)

10. Goschnick, S.B.: ShadowBoard: an Agent Architecture for enabling a sophisticated Digital
Self. Thesis, Dept. of Computer Science, University of Melbourne, Australia (2001)

11. Goschnick, S.B.: The DigitalFriend: the First End-User Oriented Multi-Agent System. In:
OSDC 2006, Open Source Developers Conference, Melbourne, Australia (2006)

12. Goschnick, S.B., Sterling, L.: Enacting and Interacting with an Agent-based Digital Self in
a 24x7 Web Services World. In: Workshop on Humans and Multi-Agent Systems, at the
AAMAS 2003 International Conference, Melbourne, Australia (2003)

13. Guinchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development Method-
ology: Processes, Models and Diagrams. In: Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2002) International Conference. ACM, New York (2002)

14. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesaeter, B., Berre, A., Zinnikus, I.: Meta-
models, Models, and Model Transformations: Towards Interoperable Agents. In: Fischer,
K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196, pp.
123–134. Springer, Heidelberg (2006)

15. Johnson, P., Johnson, H.: Knowledge Analysis of Tasks: Task analysis and specification
for human-computer systems. In: Downton, A. (ed.) Engineering the Human-Computer In-
terface, pp. 119–144. McGraw-Hill, London (1991)

16. Juan, T., Sterling, L.: The ROADMAP Meta-model for Intelligent Adaptive Multi-Agent
Systems in Open Environments. In: 4th International Workshop on Agent Oriented Soft-
ware Engineering, AAMAS 2003 International Conference, Melbourne (2003)

17. Kent, W.: A Simple Guide to Five Normal Forms in Relational Database Theory. Commu-
nications of the ACM 26(2), 120–125 (1983)

18. Kieras, D.: GOMS Models for Task Analysis. In: Diaper, D., Stanton, N. (eds.) Hand-book
of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Inc., Mahwah
(2004)

 From Task to Agent-Oriented Meta-models, and Back Again 57

19. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems
of BDI Agents. In: Van de Velde, W., Perram, J.W. (eds.) Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World. Springer, Berlin (1996)

20. OMG: MDA Guide V1.0.1 (2003), http://www.omg.org/docs/omg/03-06-01.pdf
21. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent

Agents. In: AOSE Workshop, AAMAS 2002, Bologna, Italy (2002)
22. Shen, Z., Li, D., Miao, C., Gay, R.: Goal-oriented Methodology for Agent System Devel-

opment. In: International Conference on Intelligent Agent Technology, IAT (2005)
23. Strauss, A.: A Social World Perspective. Studies in Symbolic Interaction 1, 119–128

(1978)
24. Sun, R.: Duality of the Mind - A Bottom Up Approach toward Cognition. Lawrence Erl-

baum Associates Inc, Mahwah (2002)
25. Tarby, J.C., Barthet, M.C.: The Diane+ Method. In: Second International Workshop on

Computer-Aided Design of User Interfaces, University of Namur, Belgium (1996)
26. Van der Veer, G., Van Welie, M.: Groupware Task Analysis. In: Hollnagel, E. (ed.) Hand-

book of Cognitive Task Analysis Design, Lawrence Erlbaum Inc., Maywah (2003)
27. Van Welie, M., Van der Veer, G.: An Ontology for Task World Models. In: DVS-IS 1998,

Adington, UK. Springer, Wein (1998)
28. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented

Analysis and Design. Autonomous Agents and Multi-Agent Systems 3, 285–312 (2000)
29. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing Multi-Agent Systems: The

Gaia Methodology. ACM Transactions on Software Eng. and Methodology 12, 417–470
(2003)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 58–71, 2008.
© IFIP International Federation for Information Processing 2008

Steps in Identifying Interaction Design Patterns for
Multimodal Systems

Andreas Ratzka

IMIK, Universität Regensburg
93040 Regensburg

Andreas.Ratzka@sprachlit.uni-regensburg.de

Abstract. The context of this work is usability engineering for multimodal in-
teraction. In contrast to other work that concentrates on prototyping toolkits or
abstract guidelines, this research focuses on user interface patterns for multimo-
dal interaction. Designing multimodal applications requires several skills rang-
ing from design and implementation. Thus, different kinds of patterns (from
architecture patterns to user interface patterns) can be applied to this field. This
work focuses on user-task near user interface patterns. At first, a traditional ap-
proach of modality selection based on task- and context-based rules is pre-
sented. Next, a twofold process of pattern mining is presented. In the first
phase, pattern candidates are derived top-down from proven knowledge about
how multimodality enhances usability. In the second phase, literature is mined
for real solutions to underpin these pattern candidates and find new ones. Along
with this, relationships between patterns are depicted.

1 Introduction

The context of this work is usability engineering for multimodal interaction. Tradi-
tional approaches in this field focus on prototyping [15, 16, 30] or decision support
for requirements analysis and work reengineering [6, 9, 32]. The later stages in the
usability engineering lifecycle, i.e. design standards and detailed design, are only
marginally covered by those decision support systems.

The idea of this work is to apply the concept of design patterns to the field of
multi-modal interaction. A design pattern is a rule connecting a common design prob-
lem with a proven solution and a description of the contexts and conditions in which
this pattern is applicable [8, 17].

The idea of patterns originates from architecture [1, 2] but has gained popularity
mainly in different fields of computing such as object orient programming [18], soft-
ware architecture [10] and user interface design [7, 40, 41, 42].

A good pattern provides a solution which cannot be derived from general guide-
lines using trivial mapping rules. A pattern is a context-specific design rule that dis-
cusses why other apparent solutions are not applicable in this context. This is done in
pattern sections titled forces – to discuss the goal conflicts impeding simple and obvi-
ous solutions – and consequences – to discuss how the goal conflicts are resolved by
the proposed solution and which new problems might arise.

 Steps in Identifying Interaction Design Patterns for Multimodal Systems 59

Multimodal interaction has not yet reached wide-spread market penetration. Never-
theless, after almost thirty years of research, several demonstration systems have been
designed. Recurring problems have lead to solutions which were reused successfully
in subsequent projects so that these solutions can be identified as interaction design
patterns [34].

Designing multimodal systems requires a lot of skills comprising among others
software architecture, implementation techniques, speech and screen design, and task
modelling. Each of these fields can be supported by different kinds of patterns such as
the (implementation-near) architecture patterns PAC, MVC and Blackboard [10] or
(user-task-oriented) user interface patterns such as those described in [40, 41].

This work focuses on patterns of the latter (user-task-near) category. Even within
this group, one can distinguish different levels of granularity. This paper describes on
the one hand higher level patterns that are based on the general principles of the mul-
timodal design space (patterns of multimodal combination and multimodal adapta-
tion), as well as more concrete use case specific patterns on the other hand [36, 37].

Similar approaches for multimodal interaction are rare. Only the work described in
[19] goes in the same direction and identifies patterns for multimodal interaction.
However, that work emphasises formalisation and avoids direct links to already exist-
ing “traditional” user interface patterns. This work, by contrast, identifies specific
multimodal interface patterns and attempts to put them in relation to traditional, more
general user interface patterns.

This paper illustrates first a simplified approach of modality selection which is
based on design rules that are derived from modality theory and interaction con-
straints. The designer selects appropriate modalities according to the requirements of
the target application. This approach results in propositions such as “use modality A”,
which are helpful during the first phases of usability engineering. But it lacks more
detailed speech and screen design recommendations. This work assumes that patterns
can complement this gap and provide decision support across all design phases.

The following sections describe the process of mining user interface patterns which
consists of two temporally overlapping phases.

In the first (top down) phase, user interface patterns are derived from general proper-
ties of the multimodal interaction design space. In the second (bottom up) phase con-
crete use cases are discussed. This paper focuses on mobile applications, discusses, how
traditional user interface patterns [40, 41, 42, 43] can be applied, and identifies new user
interface patterns that build specifically on multimodal interaction techniques.

Patters are not standing alone but are mutually interrelated and form a pattern lan-
guage [25]. Relationships cover typically usage (pattern A makes use of pattern B) and
refinement (pattern A is refined by pattern B). Beyond relationships among specifically
multimodal user interface patterns, this paper illustrates relationships between multi-
modal and traditional user interface patterns such as those found in [40, 41, 42, 43].

2 Traditional Approach of Design Support: Modality Selection
Based on Task Properties and Context of Use

Traditional approaches such as modality theory and modality properties [6], interac-
tion constraint models [9, 32] and other guidelines for multimodal interaction provide
solutions for design problems. This section exemplifies modality selection according
to task properties and context-based constraints.

60 A. Ratzka

2.1 Modality Selection According to Task Properties

The first step in designing multimodal interactive systems is to elicit interaction mo-
dalities that are appropriate for the current task. One starting point are the modality
properties described in [6], which tackle following issues:

� Required interaction channels. (Spoken language is conveyed auditively, written
text visually)

� Salience. (Auditive signals are more attention catching than visual ones)
� Local selectivity. (visual data are perceived only if they are paid attention to)
� Degree of user control. (static modalities like written text allow more user control

over pacing than dynamic modalities such as videos or spoken text)
� Learning requirements. (arbitrary modalities such as newly defined symbols

require more learning efforts than those building upon existing conventions)
� Expressiveness. (analogous modalities such as graphics are preferred for convey-

ing spatial relationships whereas linguistic modalities like text convey conceptual
information such as detailed descriptions better).

Rules taken from modality theory and modality properties [6] are universally valid
and expected to be stable even for novel interaction techniques. Nevertheless a con-
cretisation for each individual project, for currently available modality combination is
needed. Figure 1 shows an exemplary task-modality matrix, which gives the user
advice on modality selection.

Input Output

S
p

e
e
c
h

 I
n

p
u

t

T
y

p
in

g

H
a
n

d
w

ritin
g

P
o

in
tin

g

F
re

e
 G

e
s
tu

re
s

E
y

e
 m

o
v

e
m

e
n

ts

A
u

d
itiv

e
 O

u
tp

u
t

V
is

u
a
l O

u
tp

u
t

H
a
p

tic
 O

u
tp

u
t

M
o

to
r In

p
u

t

S
p

e
e
c
h

 I
n

p
u

t

Sketching – – – + ? ? Urgent Information + ? ?

Graphic manipulation ? ? ? + ? ? Highly current information + ? ?

Selecting (small sets) + ? ? + + ? Status information – + ?

Selecting (large sets) + + ? ? ? ? Private information – + + + –

Text input ? + + ? ? ? Security relevant visual primary task + – – +

Fig. 1. Exemplary Modality Selection Criteria based on Task Characteristics

2.2 Interaction Constraints Based on Context of Use

After selecting (several alternative) task appropriate modalities, the designer has to
check further interaction constraints imposed by user characteristics, device character-
istics and the environment [9, 32]. These additional constraints can be cast into similar
problem-solution matrices such as the one for task characteristics. However, it is diffi-
cult for the designer to keep track of a bunch of several constraint matrices all at once.

Instead, these additional interaction constraints are presented in an (exemplary) con-
tradiction matrix. The columns of this matrix contain cases that encourage the use of an
individual interaction modality whereas the rows are listing those cases that discourage
the respective modality. The designer first checks which interaction modalities are
most appropriate for the tasks to be supported by the system. Then he checks whether

 Steps in Identifying Interaction Design Patterns for Multimodal Systems 61

for each individual candidate modality the factors listed in the columns outweigh the
factors listed in the rows and contrasts these results for each interaction modality.
Roughly speaking, the fields near the matrix diagonal (crossed out in our examples)
mark cases of conflicting usability goals.

Output Constraints

Speech output preferred Audio tones preferred

Visual text

preferred

Graphics

preferred

Illite
ra

te
 p

e
o
p
le

V
is

u
a

lly
 im

p
a

ire
d

 p
e
o

p
le

C
a

r u
s
e
r in

te
rfa

c
e
s

P
h
o
n
e
 u

s
e
r in

te
rfa

c
e
s

S
m

a
rtp

h
o
n
e
s
, P

D
A

s

B
a

d
 lig

h
tin

g
 c

o
n

d
itio

n
s

V
is

u
a

lly
 im

p
a

ire
d

 p
e
o

p
le

C
a

r u
s
e
r in

te
rfa

c
e
s

P
h
o
n
e
 u

s
e
r in

te
rfa

c
e
s

S
m

a
rtp

h
o
n
e
s
, P

D
A

s

B
a

d
 lig

h
tin

g
 c

o
n

d
itio

n
s

H
e
a
rin

g
 im

p
a
ire

d
 p

e
o
p

le

N
o

is
y
 e

n
v
iro

n
m

e
n

ts

P
u

b
lic

, c
ro

w
d

e
d

 e
n

v
iro

n
m

e
n

ts

H
e
a
rin

g
 im

p
a
ire

d
 p

e
o
p

le

N
o

is
y
 e

n
v
iro

n
m

e
n

ts

P
u

b
lic

, c
ro

w
d

e
d

 e
n

v
iro

n
m

e
n

ts

Hearing impaired people

Noisy environments

S
p

e
e
c
h

o
u

tp
u

t

d
is

c
o
u

-

ra
g
e

d

Public / crowded environments

Hearing impaired people

Noisy environments

a
u

d
io

to
n

e
s

d
is

c
o

u
-

ra
g
e
d

Public / crowded environments

Illiterate People

im
p
o
s
-

s
ib

le

Car user interfaces

Visually impaired people

V
is

u
a

l
te

x
t

d
is

c
o
u
-

ra
g
e
d

Bad lighting conditions

Visually impaired people

Car user interfaces

G
ra

p
h

ic
s

d
is

c
o

u
-

ra
g
e
d

Bad lighting conditions

Fig. 2. Exemplary Output Constraints

2.3 Shortcomings of This Approach

This traditional approach is valuable for the first steps of user interface design. Never-
theless it lacks detailed design recommendations on how several modalities have to be
combined and coordinated, which requires more detailed guidelines.

This work assumes that patterns are a valid approach to provide design support
across all phases of user interface design. The next sections outline the twofold proc-
ess of identifying user interface patterns for multimodal interaction. This process is
both top-down – based on general principles of multimodal interaction – and bottom-
up – based on real world examples of multimodal interactive systems.

3 Deriving Patterns from Generic Principles of Multimodal
Interaction

According to [31] multimodal interaction can be classified along several orthogonal
dimensions. The main dimensions of fusion (content related vs. unrelated) and paral-
lelism (temporally overlapping vs. sequential) lead to four major classes of exclusive,
alternating, concurrent and synergistic multimodality.

62 A. Ratzka

Input Constraints

Speech input preferred
Typing

preferred

Hand-

writing

preferred Pointing preferred

Illite
ra

te
 p

e
o
p
le

V
is

u
a

lly
 im

p
a

ire
d

 p
e
o

p
le

M
o

to
r im

p
a

ire
d

 p
e

o
p

le

C
a

r u
s
e
r in

te
rfa

c
e
s

P
h
o
n
e
 u

s
e
r in

te
rfa

c
e
s

S
m

a
rtp

h
o
n
e
s
, P

D
A

s

B
a
d
 lig

h
tin

g
 c

o
n
d
itio

n
s

P
e
o
p
le

 w
ith

 s
p

e
e
c
h
 d

is
o
rd

e
rs

N
o

is
y
 e

n
v
iro

n
m

e
n

ts

P
u

b
lic

 a
n

d
 c

ro
w

d
e

d
 e

n
v
iro

n
m

e
n

ts

P
e
o
p
le

 w
ith

 s
p

e
e
c
h
 d

is
o
rd

e
rs

S
m

a
rtp

h
o

n
e

s
, P

D
A

, T
a

b
le

ts

P
e
o
p
le

 w
ith

 s
p

e
e
c
h
 d

is
o
rd

e
rs

P
u
b
lic

 in
fo

rm
a
tio

n
 K

io
s
k

P
h
o
n
e
 u

s
e
r in

te
rfa

c
e
s

S
m

a
rtp

h
o
n
e
s
, P

D
A

s

N
o

is
y
 E

n
v
iro

n
m

e
n

ts

P
u

b
lic

 e
n
v
iro

n
m

e
n

ts

Hearing impaired people

People with speech disorders

Noisy environments

S
p

e
e

c
h

 i
n

p
u

t

d
is

c
o

u
ra

g
e

d

Public / crowded environments

Illiterate people

im
p

o
s

s
ib

le

Car user interfaces

Visually impaired

Motor impaired

Smartphones, PDAs

T
y
p

in
g

d
is

c
o

u
ra

g
e

d

Glaring environments

Illiterate People

im
p
o
s
-

s
ib

le

Motor impaired People

Visually impaired people

H
a

n
d

w
ri

ti
n

g

d
is

c
o
u
-

ra
g
e
d

Car user interfaces

Visually impaired people

Motor impaired people

Car user interfaces

P
o

in
ti
n

g

d
is

c
o

u
ra

g
e

d

Bad lighting conditions

Fig. 3. Exemplary Input Constraints

The potential of multi-modal interaction lies in enhanced flexibility, naturalness,
robustness and interaction performance. This can be achieved via suitable modality
combinations as well as via selection of appropriate interaction modalities, that is via
adaptation during runtime.

The CARE properties [14] define classes of modality combination in multimodal
interactive systems:

� Equivalence: One piece of information can be exchanged via several modalities
alternatively

� Specialization: One piece of information can only be exchanged via one interac-
tion modality

� Redundancy: One piece of information is conveyed via several interaction mo-
dalities in a redundant way.

� Complementarity: Several connected pieces of information are conveyed via
several mutually complementing modalities

 Steps in Identifying Interaction Design Patterns for Multimodal Systems 63

3.1 Patterns for Modality Combination

Modalities are combined to minimise task interference, maximise information
throughput, disambiguate distorted input (and output) signals, optimise saliency and
assure usability across diverse and varying contexts of use.

Patterns identified in the context of modality combination are:

� Audio-visual Workspace (makes use of complementarity)
� Audio-visual Presentation (makes use of complementarity)
� Redundant Input (makes use of redundancy)
� Redundant Output (makes use of redundancy)

Following section outlines the pattern Redundant Input in some more detail.

Redundant Input

Context
Communication channels might be unpredictably distorted due to bad lighting condi-
tions, background noise, technical (network) problems or disabilities such as speech,
motor or perception disorders.

Problem
How to assure input when communication channels are distorted in an unforeseeable
way?

Forces

� The system can be configured to use interaction modalities that are less affected by
channel disorders but in some cases all available interaction channels are distorted
to some degree. Consider following scenarios:

� How to support hands free tasks in noisy environments?
� How to interact with motor-impaired users in loud environments?
� How to interact with people with speech disorders in a hands-free scenario?

Solution
Combine several interaction channels in order to make use of redundancy. Input com-
ing from several channels (visual: e.g. lip movements, auditive: e.g. speech signal)
should be interpreted in combination in order to reduce liability to errors.

Consequences
� Even if several channels are distorted the distortion rarely affects exactly the same

pieces of information. Combining sound pieces of information from several chan-
nels some distorted parts can be reconstructed:

� In loud environments, speech recognition performance increases significantly
when audio-signals are combined with visual signals (from lip movements).

� Multimodal speech recognition can increase recognition performance for accent,
exhausted and disordered speakers.

Rationale
Independent disturbances of different channels rarely affect the same aspects of the
content. That’s why for instance audio-visual speech recognition which combines

64 A. Ratzka

acoustic signals and lip movement analysis leads to better recognition performance
than unimodal speech recognition [5, p. 24 f.]:

Plosives ([p], [t], [k], [b], [d], [g]) sound similar and are likely to be confused when
sound quality is low. At the same time these phones have distinctive lip shapes such
as open lips (in the case of [g] and [k]) vs. initially closed lips (in the case of [b] and
[p]). Lip shapes may differ for some similar sounding vowels, too.

Distortions rarely affect both the recognition of (acoustic) phonemes and corre-
sponding “visemes” in the same way. Fusion algorithms allow to combine sound
pieces of information from several channels to reconstruct distorted parts.

Known Uses
This variant is manifested in very different application areas including among others
data input (audio-visual speech recognition), person identification [39], emotion rec-
ognition [44].

3.2 Patterns for Modality Adaptation

Systems that are used by different users subsequently (changing users), by individual
users extensively (growing user expertise), in different or changing environments, or
with changing degrees of service availability (changing network bandwidth) have to
be adapted to these unforeseeable context factors. Adaptation can be done automati-
cally (channel analysis, user modelling, etc.) or initiated by the user (changed behav-
iour or explicit configuration). Based on these aspects, following patterns, which
require the presence of equivalent modalities, were identified (for a detailed descrip-
tion cf. [37]):

� Multiple Ways of Input
� Global Channel Configuration
� Context Adaptation

4 Identification of Multimodal User Interface Patterns Based on
Real World Examples – Illustrated by Mobile Systems

Patterns are never inventions by their authors but always relate to – at least three –
successful examples of system design [8]. Among several use-cases such as mobile
interaction, interactive maps, graphic design applications and systems for augmented
dual-task environments, mobile systems are selected for detailed discussion, under-
pinning of pattern candidates and pattern identification.

Examples for multimodal mobile interaction are personal assistants for e-mail and
web access such as MiPad [22], Personal Speech Assistant [13], tourist guides and
city information systems such as SmartKom mobile [26], MATCH [21, 24], MUST [3]
or COMPASS [4].

4.1 Pattern Discussion Based on Use-Case Aspects

Multimodal mobile systems and smartphones make use of spoken commands to avoid
the necessity of deep menu navigation for starting programs, placing phone calls etc.

 Steps in Identifying Interaction Design Patterns for Multimodal Systems 65

This new user interface pattern is called Voice-based Interaction Shortcut [36] and
can be used in diverse interaction scenarios.

Starting an Application

The pattern Hub and Spoke [41] is an appropriate approach for organising applica-
tions on mobile devices. Each one of the most important applications is easily reach-
able from the main page. At the same time, when leaving an application, you return to
the main page as well. This way, orientation can be granted despite the lack of space.

Additionally, mobile devices usually provide so called quick launch buttons to start
the four or five most common applications with one press. This can be seen as an
extension of Hub and Spoke.

The above mentioned pattern Voice-based Interaction Shortcut can be applied for
launching applications in one interaction step. This way, the desired program can be
started without the need for the current display to include a direct link to this application.

List Selection

List selection is another application area for the pattern Voice-based Interaction
Shortcut. Instead of scrolling through lists or poking on a screen keypad the user can
simply speak the desired list item.

Structured Text Input

Text input can be facilitated using the pattern Autocompletion [41]. The user only has
to input some letters until the list proposed by the system includes the desired entry.
Similarly list selection in very large lists can be alleviated by applying the pattern
Continuous Filter [42] allowing the user to enter the first letters of an entry until no
scrolling is necessary any more.

In some cases structured input is necessary. Think of web forms [40] or e-mail
messages. The user has to select an input field and then enter textual information.
Some input fields can be enriched with a Dropdown Chooser [41] to offer list selec-
tion instead of text input. If this Dropdown Chooser is enriched with the pattern
Voice-based Interaction Shortcut in the context of structured input forms we receive
as a result the new multimodal user interface pattern Speech-enabled Form [36].

The mobile multimodal organiser MiPad makes use of this pattern as it allows the
user among others to create e-mails via combining pen input and spoken language the
following way: When the user selects the receiver field, a recognition vocabulary
consisting of contact items is selected and speech recognition is activated. When the
user selects the subject or message field, a free-text recognition vocabulary is selected
instead.

The user’s tapping with the pen onto the input field is used to activate the speech
recogniser. This is important because speech recognition must not be active all time,
otherwise background noise, private speech, respiration and harrumphing could lead
to undesired results. Instead, activating the recogniser via tapping and deactivating it
after input or a certain period of time can avoid this problem. Thus, Speech-enabled
Form makes use of Tidwell’s [41] pattern One-off Mode.

Implementation techniques supported by XHTML+VoiceXML [23] enforce this
Speech-enabled Form paradigma.

66 A. Ratzka

Avoiding Recognition Errors

Mobile messaging systems [27] and car navigation systems [29] deal with large vo-
cabularies that can lead to poor speech recognition performance. To improve dialogue
quality some systems offer the user not only to re-speak the misrecognised word or
phrase but to select it from a list – via pointing, speaking the line number or re-
speaking with additional attributes. This change of input technique is important as it
avoids endless error-correction loops. The presentation of the n-best list in a Dropdown
Chooser [41] which allows the user to correct initially spoken words via pointing is a
new multimodal user interface pattern called Multi-modal N-best Selection [37].

Other systems propose the user to spell or type the first character(s) of the
item/name to be input. This way the size of speech recognition vocabulary can be
reduced which results in more robust recognition performance. This combination of
Continuous Filter and Voice-based Interaction Shortcut results in the new pattern
Spelling-based Hypothesis Reduction [37].

Both Multi-modal N-best Selection and Spelling-based Hypothesis Reduction are
specialisations of the above mentioned pattern Redundant Input.

4.2 Summary of Identified Patterns

Following patterns were identified for mobile multimodal interaction:

� Voice-based Interaction Shortcut
� Speech-enabled Form
� Multimodal N-best Selection
� Spelling-based Hypothesis Reduction

Form

Drop-down

Chooser

Auto-

completion

Spelling-based

Hypothesis

Reduction

Multi-modal

N-best

Selection

Good

Defaults

Voice-based

Interaction

Shortcut

Speech-

enabled

Form

Continuous

Filter

Pattern

Specific for

Multimodal

Interaction

Traditional

User Interface

Patterns

Pattern A uses Pattern B

Legend

Pattern A is refined by Pattern B

Redundant

Input

One-off Mode

Fig. 4. Patterns for Multimodal Mobile Interaction

Pattern Relationships

The four main patterns identified in this paper are in close relationship to one another:
The pattern Voice-based Interaction Shortcut is used by Multi-modal N-best Selection
as well as by Speech-enabled Form. Speech-enabled Form, a refinement of Tidwell’s

 Steps in Identifying Interaction Design Patterns for Multimodal Systems 67

[40] Form, makes use of Spelling-based Hypothesis Reduction and Multi-modal N-
best Selection as well as of Tidwell’s [41] One-off Mode. Multi-modal N-best Selec-
tion makes use of Tidwell’s [41] Drop-down Chooser. Spelling-based Hypothesis
Reduction uses the pattern Continuous Filter [42]. Following figure illustrates these
relationships visually.

Following section describes the pattern Speech-enabled Form in some more detail.
The remaining patterns can be found [36, 37].

Speech-Enabled Form

Context
The user has to input structured data which can be mapped to some kind of form con-
sisting of a set of atomic fields.

Devices such as PDAs do not provide a keyboard for comfortable string input. In
other situations the device may support keyboard input but the user has only one hand
available for interacting with the system.

This pattern is frequently used together with the patterns Dropdown Chooser [41]
and Autocompletion [41]. For error handling and avoiding Multi-modal N-best Selec-
tion and Spelling-based Hypothesis Reduction can be used.

Problem
How to simplify string input in form filling applications?

Forces

� Selecting areas in 2D-space is accomplished comfortably with a pointing device
but string input via pointing (with on-screen keyboards) is awkward.

� Values for some form items (academic degree, nationality etc.) are restricted and
can be input using drop down choosers (combo boxes). But this may lead to screen
clutter and additional navigation and scrolling.

� Speech recognition is very comfortable for selecting invisible items but the input of
unconstrained text suffers from recognition errors.

Solution

Wherever possible determine acceptable values for each form field. Support value
selection via Dropdown Choosers and, alternatively, via voice commands.

Let the user select the desired form field via pointing and input values via speech.
The speech input complexity can be reduced, as only the vocabulary of the selected
form item needs to be activated at the time.

In order to avoid that the speech recogniser interprets background noise as input,
the recogniser should be activated only when the user is using speech input. One pos-
sibility is to activate the speech recogniser only while the user is holding down the
pointing device over the desired entry field (cf. Tidwell’s [41] pattern Spring-loaded
Mode). Another possibility is to activate the speech recogniser for a certain time win-
dow after entry field selection (cf. Tidwell’s [41] One-off Mode).

Consequences

� The user can comfortably combine pen input for selecting input fields with speech
for value specification.

� Navigation and scrolling in drop down lists can be avoided.

68 A. Ratzka

� Constraining the voice recognition vocabulary according to the selected text field
helps to avoid speech recognition errors.

� Speech recognition errors might occur anyway. In case of poor recognition per-
formance all speed advantages might be lost due to the need of error corroboration.

Rationale

Users prefer speech to input descriptive data, or to select objects among large or in-
visible sets [20, 33].

In QuickSet, standard direct-manipulation was compared with the pen/voice multi-
modal interface. Multi-modal interaction was significantly faster [12].

Known Uses

Mobile Systems such as Microsoft’s MiPad [22] and IBM’s Personal Speech Assis-
tant [13] are good examples.

With MiPad the user can create e-mail messages via Tap And Talk. The user can
select the addressee field and the speech recognition vocabulary is constrained to
address book entries. If the user selects the subject or message field an unconstrained
vocabulary is selected so that the user can input unconstrained text.

As a further example one could cite the QuickSet System [11].
The multi-modal facilities offered by X+V (XHTML and VoiceXML) and sup-

ported by the Opera Browser are heavily focussed on this Speech-enabled Form para-
digm [23].

Related Patterns

This pattern is a multi-modal extension of Form as found in [40] and [38]. It is imple-
mented using the pattern Voice-based Interaction Shortcut in the same way as Forms
are implemented using patterns such as Dropdown Chooser and Autocompletion.

Tidwell’s [41] patterns Spring-loaded Mode and One-off Mode can be used to con-
trol recogniser activation.

For error handling consider to use Multi-modal N-Best-Selection and Spelling-
based Hypothesis Reduction.

5 Conclusion

This paper revealed the activities for mining patterns and creating a pattern language
in emerging interaction paradigms of multimodal interaction. Modality properties and
interaction constraints seem to give helpful advice in deciding which interaction tech-
nique should be used in which context. But for deeper design support more detailed
guidelines or patterns are needed.

Patterns are identified both during top-down phases (based on multimodal interac-
tion principles) and during bottom-up phases (based on pertinent use cases).

Recently, case studies involving empirical user tests on a multimodal email organ-
iser both for desktop and mobile systems have been performed [35]. The results
support the plausibility of this approach. In particular, the patterns Voice-based Inter-
action Shortcut and Speech-enabled Form were met with high user acceptance. This
holds also for traditional interface patterns such as Tidwell’s [41] Autocompletion.
Tidwell’s [41] Spring-loaded Mode or One-off Mode seem to be crucial for control-
ling recogniser activation.

 Steps in Identifying Interaction Design Patterns for Multimodal Systems 69

References

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language. Oxford University Press, Oxford (1977)

2. Alexander, C.: The Timeless Way of Building. Oxford University Press, Oxford (1979)
3. Almeida, L., Amdal, I., Beires, N., Boualem, M., Boves, L., den Os, E., Filoche, P., Go-

mes, R., Knudsen, J.E., Kvale, K., Rugelbak, J., Tallec, C., Warakagoda, N.: Implementing
and evaluating a multimodal and multilingual tourist guide. In: Proceedings of the Interna-
tional CLASS Workshop on Natural, Intelligent and Effective Interaction in Multimodal
Dialogue Systems (2002)

4. Aslan, I., Xu, F., Uszkoreit, H., Krüger, A., Steffen, J.: COMPASS2008: Multimodal,
Multilingual and Crosslingual Interaction for Mobile Tourist Guide Applications. In:
Maybury, M., Stock, O., Wahlster, W. (eds.) INTETAIN 2005. LNCS (LNAI), vol. 3814,
pp. 3–12. Springer, Heidelberg (2005)

5. Benoît, C., Martin, J.C., Pelachaud, C., Schomaker, L., Suhm, B.: Audio-Visual and Mul-
timodal Speech Systems. In: Gibbon, D. (ed.) Handbook of Standards and Resources for
Spoken Language Systems - Supplement Volume (1998)

6. Bernsen, N.O.: Multimodality in Language and Speech Systems – from theory to design
support tool. In: Lectures at the 7th European Summer School on Language and Speech
Communication (ESSLSC) (1999)

7. Borchers, J.: A Pattern Approach to Interaction Design. John Wiley & Sons, Inc., Chiches-
ter (2001)

8. Brown, W., Malveau, R., McCormick, H., Mowbray, T., Thomas, S.W.: The Software Pat-
terns Criteria (1998), http://www.antipatterns.com/whatisapattern/

9. Bürgy, C.: An Interaction Constraints Model for Mobile and Wearable Computer-Aided
Engineering Systems in Industrial Applications. Department of Civil and Environmental
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA (2002)

10. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-orientierte
Softwarearchitektur. Addison-Wesley, Reading (1998)

11. Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., Clow, J.:
QuickSet: multimodal interaction for distributed applications. In: MULTIMEDIA 1997:
Proceedings of the fifth ACM international conference on Multimedia, pp. 31–40. ACM
Press, New York (1997)

12. Cohen, P., McGee, D., Clow, J.: The efficiency of multimodal interaction for a map-based
task. In: Proceedings of the sixth conference on Applied natural language processing, pp.
331–338. Morgan Kaufmann, San Francisco (2000)

13. Comerford, L., Frank, D., Gopalakrishnan, P., Gopinath, R., Sedivy, J.: The IBM Personal
Speech Assistant. In: Proc. of IEEE ICASSP 2001, pp. 319–321 (2001)

14. Coutaz, J.I., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four Easy Pieces
for Assessing the Usability of Multimodal Interaction: the CARE Properties. In: Proceed-
ings of INTERACT 1995 (1995)

15. Dragičević, P.: Un modèle d’interaction en entrée pour des systèmes interactifs multi-
dispositifs hautement configurables. Université de Nantes, école doctorale sciences et tech-
nologies de l’information et des matériaux. Diss. (2004)

16. Duarte, C., Carriço, L.: A conceptual framework for developing adaptive multimodal ap-
plications. In: IUI 2006: Proceedings of the 11th international conference on Intelligent
user interfaces. ACM Press, New York (2006)

17. Gabriel, D.: A Pattern Definition. web ressource (2007), http://hillside.net/
patterns/definition.html

70 A. Ratzka

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

19. Godet-Bar, G., Dupuy-Chessa, S., Nigay, L.: Towards a System of Patterns for the Design
of Multimodal Interfaces. In: Proceedings of 6th International Conference on Computer-
Aided Design of User Interfaces CADUI 2006, pp. 27–40. Springer, Heidelberg (2006)

20. Grasso, M.A., Ebert, D.S., Finin, T.W.: The integrality of speech in multimodal interfaces.
ACM Transactions on Computer-Human Interaction 5(4), 303–325 (1998)

21. Hastie, H.W., Johnston, M., Ehlen, P.: Context-Sensitive Help For Multimodal Dialogue.
In: ICMI 2002: Proceedings of the 4th IEEE International Conference on Multimodal In-
terfaces. IEEE Computer Society, Los Alamitos (2002)

22. Huang, X., Acero, A., Chelba, C., Deng, L., Duchene, D., Goodman, J., Hon, H., Jacoby,
D., Jiang, L., Loynd, R., Mahajan, M., Mau, P., Meredith, S., Mughal, S., Neto, S.,
Plumpe, M., Wang, K., Wang, Y.: MiPad: A Next Generation PDA Prototype. In: ICSLP
2000 (2000)

23. IBM: Developing X+V Applications Using the Multimodal Toolkit and Browser. Manual
(2002)

24. Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., Whittaker, S.,
Maloor, P.: MATCH: an architecture for multimodal dialogue systems. In: Proc. of the
40th Annual Meeting on Association for Computational Linguistics, ACL 2002, pp. 376–
383 (2002)

25. Mahemoff, M.J., Johnston, L.J.: Usability Pattern Languages: the “Language” Aspect. In:
Hirose, M. (ed.) Human-Computer Interaction: Interact 2001, pp. 350–358. IOS Press,
Amsterdam (2001)

26. Malaka, R., Haeussler, J., Aras, H.: SmartKom mobile: intelligent ubiquitous user interac-
tion. In: IUI 2004: Proceedings of the 9th international conference on Intelligent user inter-
face, pp. 310–312. ACM Press, New York (2004)

27. Marx, M., Schmandt, C.: Putting people first: specifying proper names in speech inter-
faces. In: UIST 1994: Proceedings of the 7th annual ACM symposium on User interface
software and technology, pp. 29–37. ACM Press, New York (1994)

28. Milota, A.D.: Modality fusion for graphic design applications. In: ICMI 2004: Proceedings
of the 6th international conference on Multimodal interfaces, pp. 167–174. ACM Press,
New York (2004)

29. Neuss, R.: Usability Engineering als Ansatz zum Multimodalen Mensch-Maschine-Dialog.
Fakultät für Elektrotechnik und Informationstechnik, Technische Universität München,
Diss. (2001)

30. Niedermaier, F.B.: Entwicklung und Bewertung eines Rapid-Prototyping Ansatzes zur
multimodalen Mensch-Maschine-Interaktion im Kraftfahrzeug. Fakultät für Elektrotechnik
und Informationstechnik, Technische Universität München, Diss. (2003)

31. Nigay, L., Coutaz, J.: A design space for multimodal systems: concurrent processing and
data fusion. In: Proceedings of Human Factors in Computing Systems, INTERCHI 1993
Conference, pp. 172–178. ACM Press, New York (1993)

32. Obrenović, Z., Abascal, J., Starčević, D.: Universal accessibility as a multimodal design
issue. In: Commun. ACM, vol. 50, pp. 83–88. ACM Press, New York (2007)

33. Oviatt, S., Cohen, P., Wu, L., Vergo, J., Duncan, L., Suhm, B., Bers, J., Holzman, T., Wi-
nograd, T., Landay, J., Larson, J., Ferro, D.: Designing the User Interface for Multimodal
Speech and Pen-based Gesture Applications: State-of-the-Art Systems and Future Re-
search Directions. Human Computer Interaction 15(4), 263–322 (2000)

 Steps in Identifying Interaction Design Patterns for Multimodal Systems 71

34. Ratzka, A., Wolff, C.: A Pattern-based Methodology for Multimodal Interaction Design.
In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 677–
686. Springer, Heidelberg (2006)

35. Ratzka, A.: A Wizard-of-Oz Setting for Multimodal Interaction. An Approach to User-
Based Elicitation of Design Patterns. In: Osswald, A., Stempfhuber, M., Wolff, C. (eds.)
Open Innovation. Proc. 10th International Symposium for Information Science, Univer-
sitätsverlag Konstanz, pp. 159–170 (2007a)

36. Ratzka, A.: Design Patterns in the Context of Multi-modal Interaction. In: Proceedings of
the 6th Nordic Conference on Pattern Languages of Programs 2007 VikingPLoP 2007 (to
appear, 2007b)

37. Ratzka, A.: Design Patterns for Robust and Accessible Multimodal Interaction. In: Pro-
ceedings of EuroPLoP 2008 (to appear, 2008)

38. Sinnig, D., Gaffar, A., Reichart, D., Seffah, A., Forbrig, P.: Patterns in Model-Based Engi-
neering. In: CADUI 2004, pp. 195–208 (2004)

39. Snelick, R., Indovina, M., Yen, J., Mink, A.: Multimodal biometrics: issues in design and
testing. In: ICMI 2003: Proceedings of the 5th international conference on Multimodal in-
terfaces, pp. 68–72. ACM Press, New York (2003)

40. Tidwell, J.: COMMON GROUND: A Pattern Language for Human-Computer Interface
Design (1999), http://www.mit.edu/~jtidwell/interaction_patterns.
html

41. Tidwell, J.: Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly, Se-
bastopol (2005)

42. van Welie, M., Trætteberg, H.: Interaction Patterns in User Interfaces. In: Proceedings of
the Seventh Pattern Languages of Programs Conference (2000)

43. van Welie, M.: Task-based User Interface Design. Dutch Graduate School for Information
and Knowledge Systems, Vrije Universiteit Amsterdam, Diss. (2001)

44. Zeng, Z., Tu, J., Liu, M., Zhang, T., Rizzolo, N., Zhang, Z., Huang, T.S., Roth, D., Levin-
son, S.: Bimodal HCI-related affect recognition. In: ICMI 2004: Proceedings of the 6th in-
ternational conference on Multimodal interfaces, pp. 137–143. ACM Press, New York
(2004)

Information Supply Mechanisms in
Ubiquitous Computing, Crisis Management

and Workflow Modelling

Jurriaan van Diggelen, Robbert-Jan Beun, Rogier M. van Eijk,
and Peter J. Werkhoven

Institute of Information and Computing Sciences
Utrecht University, the Netherlands

{jurriaan,rj,rogier}@cs.uu.nl, peter.werkhoven@tno.nl

Abstract. The successful application of ubiquitous computing in crisis manage-
ment requires a thorough understanding of the mechanisms that extract infor-
mation from sensors and communicate it via PDA’s to crisis workers. Whereas
query and subscribe protocols are well studied mechanisms for information ex-
change between different computers, it is not straightforward how to apply them
for communication between a computer and a human crisis worker, with limited
cognitive resources. To examine the imposed cognitive load, we focus on the re-
lation of the information supply mechanism with the workflow, or task model, of
the crisis worker. We formalize workflows and interaction mechanisms in colored
Petri nets, specify various ways to relate them and discuss their pros and cons.

Keywords: Ubiquitous Computing, Notification Systems, Human-machine In-
teraction, Workflow Modelling, Petri Nets.

1 Introduction

Ubiquitous computing [20] is a model of human-computer interaction which offers spe-
cific application possibilities and which requires specific design methodologies. In this
paper, we will study the use of Workflow Modelling (WM) for designing Ubiquitous
Computing (UC) systems, in the domain of Crisis Management (CM). We shall briefly
explain these three disciplines and their relations below.

CM involves identifying an incident or a disaster, such as fire or a traffic accident,
and subsequently confronting and resolving it in order to minimize the damage. Infor-
mation transfer plays a crucial role in these activities. Lack of information (information
underload [11]) is often identified as a potential cause of mistakes as it leads to deci-
sions based on incomplete information. Also, too much information (cognitive overload
[10]) may cause errors, as it distracts the crisis worker from his or her primary tasks.

Ubiquitous computing provides an adequate way to bridge the information gap in
CM. UC aims at making hundreds of networked computing devices and sensors work
together to get the right information to the right person at the right time [4]. What
qualifies as right information then depends on the work that is performed by the crisis
team member.

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 72–83, 2008.
c© IFIP International Federation for Information Processing 2008

Information Supply Mechanisms in UC, CM and WM 73

This is how Workflow Modelling fits in. WM has proven itself as a successful method
to precisely describe a business process and optimize various aspects such as efficiency,
average completion time, and utilization of resources. In our opinion, WM is also a
promising approach to model work processes in the CM domain. In general, we believe
that WM yields valuable insights in the design phase of any UC system. The reason for
this is simple. If we expect a system to pro-actively present valuable information to its
user (as in UC), the system must know something about the user’s task. In this paper, we
will use the term workflow interchangeably with the term task, although in the literature
the two terms are sometimes used to denote slightly different things (we will come back
to this issue in Section 5). Therefore, WM can be regarded as a necessary part of the
design phase of the system.

Whereas UC, CM and WM are all well-developed research areas, the combina-
tion of the three disciplines raises several issues that have not yet been addressed in
the literature. In this paper, we tackle two of these issues, which are briefly described
below.

The first issue concerns the application of WM to CM. Current workflow manage-
ment techniques are typically tailored to business processes. Likewise, current workflow
analysis techniques are typically concerned with business goals, e.g. minimizing pro-
duction costs. To apply WM to the CM domain, the important aspects of CM should be
well-representable, such as ignorance, information underload, cognitive overload and
distraction. In this paper we will apply a WM technique which uses Petri Nets [16]. We
will show how the knowledge of the crisis worker can be modelled in this approach.
Furthermore, we will show how notions such as information underload and cognitive
overload can be mapped to well-known theoretical properties of Petri Nets.

The second issue concerns the application of WM to UC, i.e. the modelling of the
interaction mechanisms that are responsible for providing the crisis worker with the
right information. Two well-known interaction mechanisms in UC (and multi-agent
systems in general) are the Query protocol and the Publish/Subscribe protocol [3]. Both
of these protocols have been specified using various formal methods, among which
Petri Nets. Nevertheless, these specifications focus on the low level properties of the
interaction mechanisms, such as possible network failures, input buffer overloads and
so forth. Because UC and CM require us to consider the cognitive aspects of information
exchange, these specifications do not suffice. We will show that, by modelling various
interaction mechanisms directly in the workflow model, we can examine the effects of
these interaction mechanisms in terms of cognitive aspects. In fact, it appears that, next
to the query protocol, at least four different types of subscription mechanisms exist.
For each of the interaction mechanisms, we will give a Petri net specification and give
template design procedures to join these with the workflow model. Furthermore, we will
compare the different interaction mechanisms by evaluating their effects on resolving
information underload and preventing cognitive overload.

Section 2 presents workflow modelling. Section 3 discusses how information supply
mechanisms can be formalized in relation to a workflow. Analysis techniques are dis-
cussed in Section 4. Related work is discussed in Section 5, followed by a conclusion
and directions for future work in Section 6.

74 J. van Diggelen et al.

2 Workflow Modelling

Standard workflow modelling techniques distinguish between tasks, conditions and
cases. A task refers to an indivisible piece of work that needs to be done. The order
of these tasks is determined by conditions. The thing that is produced or modified as a
result of the work carried out, is called the case.

In crisis management, the case is the incident or crisis that is being handled, e.g. a
fire reported at the fire station. A condition represents the current state of the incident,
for example whether the fire is being fought by firemen or not. The tasks in this example
are the pieces of work carried out by the firemen, such as moving to the disaster area, or
extinguishing the fire. In the CM-workflows discussed in this paper, all tasks are carried
out by the same resource. We refer to this resource as the actor.

Workflows can be specified using Petri nets. Figure 1 specifies the workflow of the
fire example.

Extinguish

MoveBackMoveToP1 P2 P3

Fig. 1. The CM Workflow

A Petri net consist of places, transitions and tokens. Places are represented by ovals
and correspond to the conditions of the workflow. Transitions are represented by rect-
angles and correspond to tasks. Tokens are represented by black dots and correspond to
the cases being handled.

In Petri nets, transitions are the active components, i.e. they can move tokens from
input places (places connected by incoming arrows) to output places (places connected
by outgoing arrows). A transition can fire if a token resides at all of its input places.
After a transition has fired, it consumes a token at each of its input places and produces
a token at each of its output places.

In Figure 1, the transition MoveTo can fire, because place p1 contains a token. After
the transition has fired, place p1 is empty, and place p2 contains one token. In this
configuration, the transitions Extinguish and MoveBack can fire (it is undefined which
one of the two will actually fire). The process ends when the token arrives at place p3.

To model the characteristics of a case, known as case attributes, we extend the clas-
sical Petri net with color. In colored Petri nets, tokens have a value which can be used
in conditional statements at transitions and which can be altered by the firing of tran-
sitions. For example, suppose that the token in Figure 1 contains the value 〈fire:on ,
location:townhall〉1. The transition MoveTo contains a conditional statement that only
tokens with value fire:on can be consumed. This establishes that the firemen only move
to locations where a fire is burning. The transition MoveBack states that the token must
have the value fire:out. This prevents that the firemen leave the disaster area too quickly.

1 For readability, we have not included color information in the Petri net diagrams.

Information Supply Mechanisms in UC, CM and WM 75

Contrary to most WM techniques, token values do not represent what the character-
istics of the case actually are, but what the actor knows about the case. For example,
the transition Extinguish states that after the transition has fired the token has the value
fire:unknown. This represents that the firemen do not know whether their extinguishing
efforts have resulted in the fire going out. It may be that there are still flames inside
the building which are not visible from outside. For the fireman to continue with the
task Extinguish or MoveBack, he must know whether the fire is still burning or not. In
a ubiquitous computing environment, the fireman obtains this information via his PDA
which establishes a wireless connection with the fire sensors in the building. For a tech-
nical analysis on the interaction between the PDA and the sensors in the environment,
the reader is referred to [19].

In this paper, we are mainly concerned with the interaction between the PDA and
the crisis worker. In the next section, we discuss different ways in which the PDA can
present information to its user and how this can be modeled in the workflow.

3 Information Supply Mechanisms

To model an information supply mechanism, two additional Petri nets must be intro-
duced. For modularity, we have separated these Petri nets from the main workflow. Ad-
ditionally, the relations between these Petri nets and the main workflow are specified.

One Petri net model concerns the world, which is the ultimate source from which
information is obtained. Figure 2 shows a model of a dynamically changing world.
This Petri net simply replaces the value of the token in place p15 with a random value,
following either transition Update1 or Update2. This simple model is sufficient for our
purposes, but can be easily replaced by a more sophisticated world model, if required.

P15Update1 Update2

Fig. 2. World model

Another Petri net is used to model how information is obtained from the world and
how the interaction protocol provides access to this information. Throughout the rest of
this section, we will describe several simple models of well-known interaction mecha-
nisms, such as query and subscribe.

Most insight into the information supply mechanisms is provided by the way in
which the three individual Petri nets are combined into a whole. This aspect forms the
most important part of the remainder of this section. For the query mechanism, this is
described in Section 3.1. Three different kinds of subscribe mechanisms are described
in Section 3.2, and a conditional subscribe mechanism is presented in Section 3.3.

3.1 Query

The first interaction mechanism we will discuss is Query. The left-hand side of Figure 3
shows the workflow plus one additional transition to establish the coupling with the
query protocol. The places and transitions belonging to the workflow are colored grey.

76 J. van Diggelen et al.

The right-hand side of the figure shows the query protocol. The two Petri nets are cou-
pled by a so-called hierarchical transition (indicated by a double-lined box). The hier-
archical query transition in the WF-net achieves that place p2 (i.e. the place with which
the hierarchical transition is connected), becomes identical with the input/output place
of the query Petri net (place p4 which is labelled with “I/O”).

Query

Extinguish

MoveBackMoveTo

Query

Sense

Sensor

Answer

QueryINI/OI/O

Sensor

P1 P2 P3

P4

P5

P6Query

Fig. 3. Query

The mechanism works as follows. If the token arrives at place p2, both the transition
Query and the transition Extinguish are enabled. If the transition Query fires, the token
leaves the workflow net and arrives at place p5. The token stays there until the transi-
tion Answer fires. This transition produces a token at place p4 (or equally well p2) with
some of the token attributes replaced by the attributes of the token in p6. The token in
p6 represents the current sensor reading, which is occasionally updated by the hierar-
chical transition Sense. The Petri net behind this transition is the world model depicted
in Figure 2. In this way, the token in p6 is regularly updated with up-to-date world in-
formation. Note that the token in p6 is not removed when the Answer transition fires,
as it is connected with a double-headed arrow (it is both an input and an output place).

We will characterize this information supply mechanism by discussing interruption
and optionality.

As appears from the Petri net specification, the mechanism causes a major interrup-
tion of the main workflow process. Firstly, the task Query must be performed, which is
not a part of the workflow process. After that, the token arrives at place p5, which is
also not part of the workflow process. It must wait until the transition Answer fires to
return to the main workflow.

The other issue is that the obtaining of information is optional. This is because in place
p2, two transitions may be enabled at the same time, i.e. Extinguish and Query. Hence,
the fireman may choose not to ask for an information update and carry out the Extinguish
immediately. The benefit may be time savings. The drawback may be ignorance.

3.2 Subscribe

Besides querying, a common interaction mechanism in ubiquitous computing and peer-
to-peer systems is the Publish-Subscribe protocol [15]. By subscribing to a piece of
information, a continuous flow of information is initiated. There are three ways in which
this information may actually be absorbed by the actor: non-interruptive,non-optional;
interruptive,optional or interruptive,non-optional.

Information Supply Mechanisms in UC, CM and WM 77

Figure 4 specifies the non-interruptive, non-optional subscribe mechanism. One can
think of this subscribe mechanism as the low fuel light on the dashboard of a car. It
guarantees that information is delivered to the driver (it is non-optional) and does not
require any effort (its is non-interruptive).

In the Petri net specification, the workflow model (on the left) is coupled with the
subscribe model (on the right) using a fusion set.2 (called Fusion 1). Multiple places
that occur in the same fusion set become identical. The mechanism works as follows.
The subscribe protocol contains a token in place p6 which represents the content of
the subscription, for example fire:on. If this content matches the current sensor reading
(represented by the token in p7), the transition Notify fires. Otherwise, the transition
Remain Silent fires. The token in place p5 (and likewise p3) is provided with up-to-date
token attributes as a result of this firing. The information arrives at the actor during
the execution of his tasks, i.e. the information in the token of p3 is blended with the
information in the token of the workflow.

Fusion 1Fusion 1

Extinguish

MoveBackMoveTo

Remain
Silent

Notify

Sense

Sensor

Fusion Fusion 1

Sensor

P1 P2

P3

P4

P5

P6 P7

Fig. 4. Subscribe 1 (non-interruptive, non-optional)

Contrary to the Query mechanism, this communication mechanism does not cause
any interruption. This is expressed in the Petri net specification by the fact that the case
token can never leave the workflow model. Furthermore, the obtaining of up-to-date
information is not optional but is enforced by the model.

Some information is too complex to be conveyed without interruption as it requires
some mental processing by the receiver. For these cases, an interruptive subscribe mech-
anism can be used. Figure 5 shows an interruptive, optional subscription mechanism.
One can think of this subscribe mechanism as the clock on a mobile phone. The phone
maintains up-to-date information which the owner can choose to consult by investing a
little effort, namely getting it out of his pocket.

In the specification p4,p5,p6 and p7 are identical, and contain a token which rep-
resents up-to-date information about the world. When the transition Consult fires, the
token attributes of this token are passed to the token in the workflow model.

2 The difference of assembling Petri nets with a fusion set instead of with a hierarchical tran-
sition, is that when the hierarchical transition occurs multiple times in the main Petri net,
multiple instances of the sub-Petri net are created. This is not the case when places from the
same fusion set occur multiple times in the main Petri net.

78 J. van Diggelen et al.

Extinguish

MoveBackMoveTo

Consult

Fusion 1Fusion 1

Consult

Fusion 1Fusion 1

Consult

Fusion 1Fusion 1

Remain
Silent

Notify

Sense

Sensor

Fusion Fusion 1

Sensor

P1 P2 P3

P4 P5 P6

P7

P8 P9

Fig. 5. Subscribe 2 (interruptive, optional)

This interaction mechanism causes a little interruption. This appears from the fact
that the Consult task (which is not part of the workflow model) must be carried out. As
with the Query mechanism, the obtaining of information is optional.

Yet another type of subscribe mechanism is the interruptive, non-optional subscription,
as depicted in Figure 6. This mechanism can be thought of as a mobile phone, i.e. when
it rings, the owner is forced to consult it before he can continue with the task at hand.

This specification uses two fusion sets. Fusion 1 consists of p4,p6,p8 and represents
that there is currently a notification to be processed. Fusion 2 consists of p5,p7 and p9 and
represents that there is currently no notification to be processed. The notification protocol
(shown on the right of the figure) ensures that a token cannot be in the groups Fusion 1 and
Fusion 2 at the same time. This is because, when Notify fires, the token is removed from
Fusion 2 and added to Fusion 1. The only way that the token can return to Fusion 2 is via
Consult, which removes a token from Fusion 1 and adds a token to Fusion 2. Therefore,
when a token resides in Fusion 1 the tasks in the workflow are blocked (because all tasks
require a token to be present in Fusion 2). This means that the actor has no choice but to
consult the notification. After the transition Consult has fired the token is moved from
Fusion 1 to Fusion 2, and the workflow tasks are enabled again.

Like the previous subscribe protocol we discussed, this mechanism causes a little
interruption due to the Consult task. However, this subscribe mechanism is not optional,
i.e. when a notification is sent, the actor has no choice but to turn his attention to it.

Extinguish

MoveBackMoveTo

ConsultConsult

Notify
P1 P2 P3

P4 P6 P7P5

P8 P9

P10 P11

Sense
Fusion Fusion 1 Fusion Fusion 1

Fusion Fusion 1

Fusion Fusion 2 Fusion Fusion 2

Fusion Fusion 2

Fusion Sensor

Fig. 6. Subscribe 3 (interruptive, non-optional)

Information Supply Mechanisms in UC, CM and WM 79

3.3 Conditional Subscribe

By using a conditional subscription, a user requests to receive notifications of some-
thing only if some condition holds. For example, the fireman may request to receive
notifications about fire:out only when he is at the disaster area, and not when he is at
the office. In order to realize such a notification system, the system must be context-
aware [1], i.e. it must know the user’s location and adapt its behavior to it. Although
for every communication mechanism discussed so far, a context-aware variant can be
specified, we focus on a variant of the interruptive, non-optional subscribe mechanism
(Subscribe 3 in Figure 6). As an example of this conditional subscribe mechanism, one
can think of a context-aware mobile phone, which automatically shuts off when the user
enters a lecture hall.

The specification of the conditional subscribe is depicted in Figure 7. This specifi-
cation uses a third fusion set Fusion 3, consisting of p13, p14 and p15 (see the world
model in Figure 2). The purpose of this fusion set is to model the effect of task exe-
cution on the world (place p15). For example, the transition MoveTo updates the token
in place p13 (and p15) to represent the information that the fireman is no longer at the
office but at the disaster area. The Sense transition is specified such that it also obtains
information about the location of the fireman (for example, using GPS). An extra place
is added (p12), which represents the condition when the subscription applies (in our ex-
ample, that the fireman is not at the office). Like the protocols discussed before, place
p10 represents the information to which the actor is subscribed (in our example fire:out).

Extinguish

MoveBackMoveTo

ConsultConsult

Notify
P1 P2 P3

P4 P6 P7P5

P8 P9

P10 P11

Sense
Fusion Fusion 1 Fusion Fusion 1

Fusion Fusion 1

Fusion Fusion 2 Fusion Fusion 2

Fusion Fusion 2

Fusion Sensor

P12

Fusion Fusion 3Fusion Fusion 3

P13 P14

Fig. 7. Conditional Subscribe (interruptive, non-optional)

With respect to interruption and choice, this protocol has the same properties as the
third subscribe protocol (Figure 6). It causes a little interruption when a notification
is received and the owner of the device has no choice but to process the incoming
notifications.

3.4 Comparison

The differences between the five information supply mechanisms discussed in this sec-
tion are summarized below. We have used three degrees to indicate interruption. High
interruption (+) means that a transition and a place are visited which are not part of
the workflow model. Medium interruption (+/-) means that only a transition is executed

80 J. van Diggelen et al.

which is not part of the workflow model. No interruption (-) means that no states and
transitions are executed which are not part of the workflow. Optionality can be positive
(+), when the actor has a choice to obtain information, or negative (-) when there is no
such choice. Context aware (+) means that the information supply mechanism behaves
differently depending on at which place the actor resides at that moment. Otherwise,
the system is not context aware (-).

Query Subscr1 Subscr2 Subscr3 CondSubscr3
Interruption + − +/− +/− +/−
Optionality + − + − −

Context aware − − − − +

As we have argued before, a context aware variant can be made also for the other in-
formation supply mechanisms. This would yield three more protocols. With respect to
the properties of Interruption and Optionality, there are six possible combinations. We
believe that the four combinations we have covered are the only sensible ones. A pro-
tocol with optionality and no interruption is impossible because a choice can only be
modeled by introducing a transition which is not part of the workflow, which would
cause interruption again. A protocol with high interruption but no optionality would be
possible, but not very useful, because the second subscribe mechanism can be used for
the same purpose, causing only medium interruption.

4 Analysis Techniques

We have implemented the Petri nets described in this paper in CPN-tools [5], a tool for
modelling and validating colored Petri nets. Using this tool, several kinds of errors in
the model can be detected.

Firstly, there are the trivial structural errors in the design model. The transitions and
tokens may be wrongly connected, the transitions may be configured in a way which
conflicts with the token values, or the data structures may contain syntactic errors. In
these cases, the CPN-tool will simply generate a syntax error stating that the Petri net
is incorrect.

More interesting are the errors in the crisis management model which the Petri net
represents. For the workflow part of the model, all analysis techniques can be used which
have been developed for workflow analysis [17]. For example, it can be checked whether
the workflow terminates, i.e. whether the token eventually arrives at a place which is the
final destination (in our example, this is place p3). Another important property for work-
flow Petri nets is the boundedness property. This property states that every place will
never contain more than a certain number of tokens. This is important because otherwise
the relation between the token and the case that it represents becomes unclear.

In the remainder of this section, we describe some validation criteria that are specific
to the combination of workflow models and information supply mechanisms.

The first issue we discuss is information underload. In our workflow model, we have
represented the information needs of the actor [18] as the preconditions of a task. For
example, the transition MoveBack in Figure 1 can only fire if fire has the value out.
Because the precondition of the task Extinguish is fire:on, a token with value fire:

Information Supply Mechanisms in UC, CM and WM 81

unknown in p2 can go nowhere. In Petri net theory, such a situation is called deadlock.
Many algorithms exist to compute deadlock situations efficiently. In our crisis manage-
ment models, deadlock indicates information underload of the actor, which should be
resolved by adding information supply mechanisms. For example, the workflow model
in Figure 1 suffers from information underload. This is because after the transition Ex-
tinguish has fired the value of fire is unknown and the net is in a deadlock situation. The
other models (in Figure 3, 4, 5, 6, 7), do not lead to a deadlock situation and thus do not
suffer from information underload.

As mentioned before, another important problem in crisis management is cognitive
overload, i.e. when the actor receives too much information to be able to stay focussed
on his main tasks. In our framework, we can measure the expected cognitive load of the
information supply mechanisms by performing a simulation analysis. Using CPN-tools,
the execution of a Petri net can be simulated to analyze how the token moves through
the transitions and places. By applying a counter to some of the transitions and places
that do not belong to the main workflow (such as consult in our example), an indicator
is obtained on the expected cognitive load.

We have applied this simulation analysis to the Petri-nets described in this paper.
Because the workflow and world model are very simple, this analysis merely confirmed
the properties which we had already theoretically determined in Section 3.4. In a more
realistic scenario, however, the workflow is much larger and the actor might obtain his
information from multiple sources which makes it impossible to theoretically foresee
all possible behaviors of the model. In these cases, a simulation analysis provides a
valuable contribution to what can be theoretically assessed.

5 Related Work

We will divide our discussion on related work into three categories, corresponding to
the different purposes for which our approach can be used.

Firstly, our approach can be viewed as a formalization of an interaction protocol.
Petri-net formalizations of computer-computer interaction have a long tradition in com-
puter science (e.g. [9], [2]). However, theories on human-computer interaction are usu-
ally not mathematically formalized. For example, [8] identifies an attention-utility
trade-off in notification systems. The costs of notification are defined as the amount
of attention removed from the user’s primary task. The benefits of a notification system
are characterized along three dimensions, i.e. comprehension, reaction and interruption.
Another approach addressing this trade-off focusses on peripheral information displays
[7]. This work presents experimental results on what we would call a non-interruptive,
non-optional subscribe mechanism (Subscribe 1). Whereas these approaches nicely
identify the different aspects that are important in human-computer communication,
they do not provide a formal underpinning. We believe that our Petri-net formaliza-
tion of human-computer communication is useful to make the attention-utility trade-off
more precise, resulting in a better understanding of the different aspects involved.

A second way to view our approach is as a method for analysing and evaluating
interactive systems. For this purpose, task models are frequently applied, e.g. Concur-
TaskTrees [14]. Whereas task models and workflows are tightly related [6], there are
also some differences. We will discuss some relevant correspondences and differences

82 J. van Diggelen et al.

between ConcurTaskTree models and Petri-net workflow models below. Both models
allow the representation of concurrency, have an intuitive graphical syntax, and can be
automatically verified. A difference is that task models are usually hierarchically struc-
tured whereas workflows are not. Because for our purposes, it suffices to view the work
process at one level of abstraction, this restriction of workflow models is not problem-
atic. Another difference is that Petri-nets are suitable for modelling information flows
at a high level of detail (as proven by the popularity of Petri-net based communica-
tion protocols), whereas it is not clear how this can be done in a task model. Because
modelling information flows is crucial to our approach, we have chosen for Petri-net
workflows instead of ConcurTaskTree models.

A third way to apply the results described in this paper is as a model to be used by
the computer at runtime (as is proposed in [13]). For example, it can be used by a PDA
to adjust its notification style by estimating the cognitive load it imposes on its user.
Because our model is computational, it can be applied to this purpose.

6 Conclusion and Future Research

In this paper, we have characterized different information supply mechanisms by spec-
ifying their relation with a workflow. This allows us to precisely capture those aspects
of query and subscribe mechanisms that are important for human crisis workers. In
general, we believe the techniques proposed in this paper provide valuable insights for
modelling the interaction between humans and multi-agent systems.

We have identified two promising directions for future research. Firstly, we plan to
apply more advanced workflow modelling techniques to enable a more thorough analy-
sis of crisis management. One option would be to extend the Petri nets with time. This
would allow us to estimate the average completion time of the process, and to study the
influence of different information supply mechanisms on this. Another option would be
to use adaptive workflows, which is the area of workflow management concerned with
modelling exceptions on the normal course of action. Particularly for crisis manage-
ment, this aspect is highly relevant.

Another direction for future research is concerned with agent-organizational aspects
of workflow modelling [12]. It is typically unknown at design time which sensors will
be available at the time and place a crisis takes place. Therefore, it should be possible to
discover and invoke sensors that provide valuable information at runtime. In workflow
modelling, this is called resource allocation, i.e. assigning a resource to a task in an
efficient way. In our case, the resource is a sensor and the task is making a measurement.
We plan to investigate how results from resource allocation can be used to enhance
efficiency in ubiquitous computing, for example to decide which sensor can best be
queried for which type of information.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better
understanding of context and context-awareness, pp. 304–307 (1999)

2. Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Using colored petri nets for conversation
modeling. In: Dignum, F., Greaves, M. (eds.) Issues in Agent Communication, pp. 178–192.
Springer, Heidelberg (2000)

Information Supply Mechanisms in UC, CM and WM 83

3. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication lan-
guage. In: Proceedings of CIKM, pp. 456–463. ACM Press, New York (1994)

4. Fischer, G.: User modeling in human-computer interaction. In: User Modeling and User-
Adapted Interaction, vol. 11. Springer, Heidelberg (2001)

5. Jensen, K., Kristensen, L., Wells, L.: Coloured petri nets and CPN tools for modelling and
validation of concurrent systems. International Journal on Software Tools for Technology
Transfer 9(3), 213–254 (2007)

6. Kristiansen, R., Traetteberg, H.: Model-based user interface design in the context of work-
flow models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 227–239. Springer, Heidelberg (2007)

7. Maglio, P.P., Campbell, C.S.: Tradeoffs in displaying peripheral information. In: CHI 2000:
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 241–
248. ACM Press, New York (2000)

8. McCrickard, D.S., Chewar, C.M.: Attuning notification design to user goals and attention
costs. Commununications of the ACM 46(3), 67–72 (2003)

9. Mikkilineni, K., Chow, Y.-C., Su, S.: Petri-net-based modeling and evaluation of pipelined
processing of concurrent database queries. IEEE Transactions on Software Engineer-
ing 14(11), 1656–1667 (1988)

10. Neerincx, M., Griffioen, E.: Cognitive task analysis: harmonizing tasks to human capacities.
Ergonomics 39(4), 543–561 (1996)

11. Netten, N., Bruinsma, G., van Someren, M., de Hoog, R.: Task-adaptive information distribu-
tion for dynamic collaborative response. Special Issue on Emergency Management Systems
of the International Journal of Intelligent Control and Systems (IJICS) 11(4), 237–246 (2006)

12. Oliveira, M.D., Cranefield, S., Purvis, M.: Normative spaces in institutional environments
by the means of commitments, reputation and colored petri nets. In: Proceedings of the 8th
International Workshop on Agent Oriented Software Engineering (AOSE) (2007)

13. Pangoli, S., Paternó, F.: Automatic generation of task-oriented help. In: UIST 1995: Pro-
ceedings of the 8th annual ACM symposium on User interface and software technology, pp.
181–187. ACM Press, New York (1995)

14. Paternò, F., Mancini, C., Meniconi, S.: Concurtasktrees: A diagrammatic notation for speci-
fying task models. In: INTERACT 1997: Proceedings of the IFIP TC13 Interantional Confer-
ence on Human-Computer Interaction, pp. 362–369. Chapman and Hall, Boca Raton (1997)

15. Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based on first
order logic. Personal Ubiquitous Computing 7(6), 353–364 (2003)

16. van der Aalst, W., van Hee, K.: Workflow management: models, methods, and systems. MIT
Press, Cambridge (2002)

17. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

18. van Diggelen, J., Beun, R.J., van Eijk, R.M., Werkhoven, P.J.: Modeling decentralized infor-
mation flow in ambient environments. In: Proceedings of ambient intelligence developments
(AmI.D 2007) (2007)

19. van Diggelen, J., Beun, R.J., van Eijk, R.M., Werkhoven, P.J.: Agent communication in ubiq-
uitous computing: the ubismart approach. In: Proceedings of the Seventh International Con-
ference on Autonomous Agents and Multi-agent Systems (AAMAS 2008), pp. 813–820.
ACM Press, New York (2008)

20. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75 (1991)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 84–97, 2008.
© IFIP International Federation for Information Processing 2008

A Method for Modeling Interactions on Task
Representations in Business Task Management Systems

Todor Stoitsev and Stefan Scheidl

SAP AG, SAP Research, Germany
{todor.stoitsev,stefan.scheidl}@sap.com

Abstract. Task modeling approaches facilitate the design of interactive systems
by bridging the gap from understanding human tasks to designing interfaces to
support these tasks. Business Task Management (BTM) systems provide ex-
plicit task representations for managing and coordinating work items, by further
requiring definition of how such task representations can be created, distributed
and monitored throughout an organization. This paper presents a method for
modeling interactions on task representations in BTM systems. It introduces
generic task-centric roles as useful abstractions, encapsulating different per-
spectives on tasks and related interactions. This allows generic, domain-
independent views on tasks resulting in enhanced adaptability of BTM systems
in different application contexts. The method is implemented in the Collabora-
tive Task Manager (CTM) tool.

Keywords: Task management, interactions modeling, end user development.

1 Introduction

The need to develop adaptable software applications which can be swiftly tailored to
specific end user needs and application domains has resulted in flexible, model-driven
software engineering approaches. Task modelling approaches have proven highly
efficient for designing interactive applications. CTT [16] enable system designers to
describe the logical activities that an interactive application should support and facili-
tate model-driven software engineering from requirements analysis to user interface
design. Further approaches like GOMS [8] take a goal-oriented view and provide
comprehensive description of activity sequences and tasks’ interrelations. GTA [21]
combines task analysis methods from human computer interaction with ethnographic
methods as used in computer supported cooperative work and provides comprehen-
sive methodology for the design of groupware systems. While the above approaches
focus on describing user activities and the interactions needed to support them, they
do not consider interactions on explicit task representations in formal systems. Such
representations are used in Business Task Management (BTM) systems to manage
and coordinate work items, and can be e.g. to-do items in personal task lists or in a
central work list of a company department. Modelling of interactions on task repre-
sentations can bring flexibility to BTM systems and make them adaptable to different
business domains and application contexts. This requires abstractions of the possible

 A Method for Modeling Interactions on Task Representations 85

interactions from personal and from organizational point of view, which can allow
clustering of requirements and detection of generic interaction patterns on task
representations.

Molina et al. consider deficiencies in known approaches for modelling collabora-
tive aspects of human work and propose pattern-based techniques for designing
groupware applications [13]. However, their methodological framework starts with
modelling of the given organizational structure, which binds the approach to a given
enterprise and business domain. Organizational patterns for early requirements analy-
sis are discussed in [9]. These patterns are however elicited based on case studies in
concrete enterprises and do not provide a high-level generalization of organizational
roles and basic interactions, needed to support collaborative work.

This paper presents a generic modelling approach, which is not confined to a given
business domain or concrete organizational structure. The approach provides abstrac-
tions for defining high level interactions on explicit task representations in BTM sys-
tems based on generic, task-centric roles. This enables flexible adaptation of the BTM
system in different usage contexts. Domain-specific extensions are enabled through
mapping of the task-centric roles to organizational roles. The presented approach is
implemented through the Collaborative Task Management (CTM) prototype.

The remainder of the paper is organized as follows. In section 2 we discuss the
background of the presented modelling method. The method is described in section 3.
In section 4 we present the implementation of the method in the CTM prototype. In
section 5 we give conclusions and future research directions.

2 Background

The presented work founds on empirical research based on site visits and interviews
at three companies from different industries: textile (120 employees), software (ca.
500 employees), automotive (ca. 150 employees) and is consolidated with extensive
literature research. As part of our activities we investigated end user interactions with
software systems within the context of day-to-day work. Our purpose was to reveal
basic user demands and pain-points in the area of task management and software
support for agile business processes.

There is plenty evidence that some aspects of human work are similar in different
business domains, organizational or individual day-to-day activities. Reappearing
interaction schemes are discussed in related literature in the field of interactive sys-
tems design, i.e. as task patterns, providing reusable structures for task models [6, 14,
15]. The idea for reappearing interactions is in the background of the presented work.
We suggest that as a first step towards user-centric task management observations it is
essential to determine basic user segmentation. It should provide high level abstrac-
tions for different user activity types and thereby also basic directions for the detec-
tion of significantly different interaction schemes on task representations.

There is a common notion of basic user activity types. These are divided into strate-
gic, tactical and operational and are especially used in decision-making and planning
studies [5, 17]. Further studies use this segmentation to reduce the complexity for sys-
tem observations from significantly different perspectives [23]. An extended view,
focusing on intellectual capital governance is presented in [22], where additionally

86 T. Stoitsev and S. Scheidl

‘Global/Societal’ and ‘Implementation/Application’ perspectives are introduced. We
suggest that this segmentation can be considered also in task management context. For
our studies we used the following basic activity types:

• Strategic: Refers to activities with high degree of unpredictability and strong
innovation character, further involving extended collaboration and people man-
agement. Example activity – strategy planning.

• Tactical: Refers to activities with higher need for flexibility and rapid adaptation.
Such activities often imply ‘on demand’ innovation and creativity to increase ef-
ficiency, avoid bottlenecks and workaround unanticipated problems. Example
activities – supply chain management, production planning.

• Operational: Refers to activities with higher degree of predictability and repeat-
ability. Such activities mostly consist of routine tasks. Example activities – sup-
port center activities, sales order processing.

• Implementation/Application: Refers to activities, where existing abstract knowl-
edge is transformed to tangible implementations and processes. It is different from
operational as there is a noticeable creative element. There is also a significant dif-
ference to the tactical level as the focus is set on the actual implementation and not
on the overall planning. Example activity – software implementation, non-
automated production/crafting.

• Societal/Educational: Refers to activities with strong societal character, where
new knowledge is created, systematized and transferred. Example activity –
teaching/training course preparation.

The presented activity types provide abstract categories for tasks of significantly dif-
ferent nature. Nevertheless, it should be considered that it is not always possible to
match all day-to-day activities of a system user to only one activity type. For example
a project manager, who is usually executing tactical activities, may have also opera-
tional tasks, deriving from common organizational practices like e.g. performance
feedback or quarterly reports.

An overview of the background information that we collected for the elaboration of
the presented method is shown in Figure 1. The three top level layers build the foun-
dation for a business centric top-down view on a task management system. We exam-
ined the different activity types described above based on identified example users
from different business domains. These were 10 employees from the textile produc-
tion company, 9 employees from the software company and 7 from the automotive
company. In the given overview on Figure 1 a possibly wide activity type scoping is
presented for completeness. We however did not explore the societal/educational
level as our focus was on business users which were not involved in any educational
activities. The involved users in each company covered all other activity types. The
users’ organizational roles in the textile company ranged for example from brand
manager (strategic/tactical) and chief sales officer (tactical) to sales officers (tacti-
cal/operational) and IT employees (implementation/application). The users were put
in the context of scenarios and use cases, which revealed their work practices and
helped to identify their demands and pain-points regarding task management. We
elaborated 3 mainstream scenarios in each company, detailed through 2 to 3 further
supportive scenarios, i.e. for special case handling or peripheral activities. For the
textile company mainstream scenarios were the initiation of special sales procedures,

 A Method for Modeling Interactions on Task Representations 87

e.g. consignment and annual discount sales, and the binding of new partner enter-
prises for electronic data interchange. For the software company these were the prepa-
ration of new product package, new software release and support center scenarios. In
the automotive company we explored prototype development and mature prototypes’
transfers from prototyping to manufacturing. The user studies were conducted using
contextual enquiry techniques [2] at the site of the respective company in the familiar
work place surrounding of the interviewees to preserve their context as far as possi-
ble. The interviews were recorded using a digital voice recorder and transcribed for
analysis. A thorough examination of the elaborated scenarios and use cases led to the
identification of reappearing interaction patterns with a software system related to
task management. Such were e.g. the creation of calendar entries with reminders, the
sending of meeting requests or the management of to-do items in Microsoft Outlook
task lists. These patterns reappeared in cross-functional areas or sometimes repeated
in different scenarios for the same user type.

The two low level layers on Figure 1 constitute the bottom-up view towards a task
management system. They provide task management concepts and features which can
support a system implementation. As the concepts provide lower granularity, a con-
cept can be relevant for more than one of the reappearing interaction patterns. In some
cases concrete features could be mapped to the detected concepts. For example, a
concept ‘Awareness’, referring to the ability to keep the user informed of possibly
approaching bottlenecks or escalations, can be supported by a feature, displaying
warning dialogs for approaching task deadlines.

Operationalactivity types

example users

use cases and
scenarios

reappearing
interaction patterns

interaction
concepts

interaction features

Societal/
Educational

Implementation/
Application

TacticalStrategic

Fig. 1. Example users (circles on second layer from top) with different activity types (top layer)
are examined in concrete use cases and scenarios. End-to-end scenarios (dotted line on use
cases and scenarios level), comprising the activities of various users with different activity
types reveal, how the system should mediate between users with different business roles. Vari-
ous reappearing interaction patterns (triangles, circles, diamonds and squares) are detected and
extracted from the different use cases and scenarios. The patterns are linked to generic interac-
tion concepts (rectangles containing arrows and interaction pattern symbols). Some concepts
are directly extracted from the use cases and scenarios (arrows on the right and on the left and
nearest empty concept rectangles containing only arrows). Concrete interaction features (black
dots beside interaction concepts’ symbols on lowest level) for supporting given interaction
concepts are identified where possible.

88 T. Stoitsev and S. Scheidl

We ordered the elaborated content in a semantic mediawiki which provided a
highly interlinked structure with certain evaluation mechanisms like e.g. querying the
(number of) occurrences of interaction patterns and related concepts in the various
scenarios and use cases. This helped to evaluate the resulting requirements towards
the interactions in real-life context. Based on these observations we were able to
clearly identify several common perspectives on task representations. These were
associated with the attitude of the persona towards a task which was always notice-
able in the background of the interactions. These perspectives were able to describe
the complete end user interaction landscape on explicit task representations in all
scenarios. We extracted them as generic task roles.

3 Task Roles

Task roles aim at providing generalizations that group certain interactions with an
explicit task representation and basically state the question: What interactions should
be supported, when a user is acting in a given task role? Task roles hence provide
task-centric perspectives that reveal different aspects of task management and enable
domain-independent abstractions of the necessary interactions on task representations.
The task roles are shown in Figure 2. The dotted line areas mark different aspects,
which influenced the derivation of the roles. The Requester and the Recipient roles
are related to the collaborative handling of a task. The right hand side area contains
roles, for which relationships to the organizational structures and hence closer con-
nections to the business context can be discovered. Thereby we suggest that collabo-
rative aspects are orthogonal to organizational aspects as collaboration is performed
throughout the complete organizational structure. It is hence reasonable to emphasize
on these aspects through explicit roles. A brief description of the derived task roles is
given in the following, where the term ‘agent’ is used to identify the role owner. An
agent is generally a system user, but it can also be a software component, which is
able to create or process tasks based on given rules.

Creator

Task

Contributor

creates
a task

requests/
delegates

recieves

not directly involved,
monitors and controls
occasionally

Collaboration Organisation

Analyst

evaluates, optimizes,
stores best practices

Responsible

Controller

Observer
Internal/External

only monitors

involved in the task, monitors
and controls task internally

assistsdoes the work

Requester

Recipient

Owner

Fig. 2. Task roles

 A Method for Modeling Interactions on Task Representations 89

• Creator – An agent which creates a task. We here only refer to the action of
creating a task, excluding its further processing.

• Owner – An agent which is executing on a task and should deliver the results.
• Controller – An agent which is able to monitor and interfere in the task activi-

ties, and which is not being directly involved in the task. Such could be e.g. a
senior manager, not directly contributing or performing on the task but who is
able to occasionally view the task and eventually trigger escalations.

• Responsible – An agent which is in charge of the successful completion and
coordination of a task. Such can be e.g. a project manager responsible for sub
tasks distributed in the project team. Thereby a responsible has lower level exper-
tise on a task than a controller.

• Observer
- Internal – An agent which can view the evolution of others’ tasks with-

out interfering. Such would be e.g. team members, who can view each
other’s tasks or various shared tasks.

- External – An agent which does not belong to a company or team but is
able to view given company’s or team’s tasks externally. Such is e.g. a
customer, who is able to track the processing of his order.

• Analyst – An agent which evaluates the outcomes of a task, considers optimiza-
tions, and saves reusable data as best-practices or recommendations. This role is
clearly related to knowledge management functions.

• Contributor – An agent which is informally connected to a task, without being
involved in it. The contributor is occasionally delivering information or resources
to a task, without being responsible for it, executing on it or even having access
to the complete task contextual information.

• Requester – An agent which delegates a task to another party.
• Recipient – An agent which receives a task from another party.

A similar representation of the task roles is given also in [7]. The Owner and Recipi-
ent roles are discussed also in [19]. The next section presents how task roles are used
for interactions modeling in the CTM system.

4 Modeling Interactions with Task Roles

We have realized the task roles as extensions to the task model used in the Collabora-
tive Task Manager (CTM) in order to enable enhanced adaptability of the system in
different application contexts. CTM is a process-enhanced groupware system which
provides advanced End User Development (EUD) capabilities and aims at enabling
users with different IT and business background to efficiently participate in business
process composition and management. EUD is defined as “a set of methods, tech-
niques, and tools that allow users of software systems, who are acting as
non-professional software developers, at some point to create, modify, or extend a
software artefact” [11]. In CTM, a process model is considered as a software artifact,
which can be adapted and enacted to support human-centric business processes.

90 T. Stoitsev and S. Scheidl

4.1 The CTM Prototype

This section gives a general overview of the CTM functionalities with respect to the
presented method for interactions modeling. A more comprehensive description of the
CTM prototype is given in [20]. CTM generally involves end users in process compo-
sition by providing added value on personal task management and leveraging their
experience with standard tools for task management (to-do lists) and collaboration
(email) towards definition of process models. The solution provides a “gentle slope of
complexity” [12] for process tailoring by closely integrating the process definition in
the actual user working environment and unfolding emergent processes behind the
scenes in an unobtrusive manner. For achieving this it uses enterprise-wide “pro-
gramming by example” [10] by implicitly reconciling data on personal task manage-
ment of multiple process participants to end-to-end process execution examples.

In order to ensure integrated support in a common user working environment, the
CTM front-end is designed as a Microsoft Outlook (OL) add-in. CTM extends OL
mail and task items and enables “programming by example” by capturing OL events
and using web services to replicate task data in a tracking repository, residing in a
Database (DB) on the CTM server. The CTM To-Do List (TDL) is shown in Figure 3.
Extensions to the standard OL tasks enable end users to create hierarchical to-do lists.
When the end user is creating or editing a CTM task they work with the familiar OL
task fields. Files can be added to CTM tasks as common OL attachments. An email
can be as well saved as a CTM task, whereby the email subject, text and attachments
are transferred to the resulting task.

Tasks can be delegated over email, whereby the recipients can further break down
the received tasks and delegate resulting (sub)tasks to other end-users. A CTM task is
delegated through a preformatted “Request” message, which recipients can “Accept”,
“Decline” (similarly to meeting requests in OL) or “Negotiate”. The latter action

Fig. 3. CTM To-Do List (TDL)

 A Method for Modeling Interactions on Task Representations 91

enables iterative negotiations for additional clarifications on tasks. When a request is
accepted, and later on completed by a recipient, the latter issues a “Declare Complete”
message. Hereupon the requester can respond with “Approve Completion” or “De-
cline Completion” message. These actions allow negotiation of deliverables before
the final completion of a delegated task. The actual discourse takes place in the email
text, independently from the given message type. This allows open-ended collabora-
tion and prevents from submitting user behavior to strict speech-act rules, which is a
known limitation in speech-acts adoption [3].

Tracking of email exchange for task delegation integrates the personal to-do lists of
different process participants to overall Task Delegation Graphs (TDG) [19] on the
server. TDGs can be inspected through a web front-end as shown on Figure 4. They
represent weakly-structured process models which are captured as actual process
execution examples and contain all task data including artifacts (attachments) and
stakeholders’ information. Tasks of different users are contained in different user
containers. TDGs provide a workflow-like overview of evolving user activities, aim-
ing to facilitate “the creation of a shared understanding leading to new insights, new
ideas, and new artifacts as a result of collaboration” [4]. In a TDG users can view
status of related tasks, identify potential bottlenecks and evaluate work distribution,
which is not possible by using common email and to-do items. Currently, due date,
task processing status and percent complete indications are provided. Attachments,
added in OL tasks, are replicated in a central DB-based Artefacts Repository (AR) on
the CTM server, and are accessible in the task nodes.

Fig. 4. Task Delegation Graph (TDG)

92 T. Stoitsev and S. Scheidl

As end users have different levels of technical expertise and attitudes towards
maintaining process data, we suggest that it is important to consider possibilities for
“seeding, evolutionary growth, and reseeding (SER)” [4] of user-defined process
models for their iterative refinement and complementation. CTM enables SER of
weakly-structured process models through extraction, adaptation and reuse of Task
Patterns (TP) [19]. We consider a TP as a reusable task structure, comprising one task
with its sub task hierarchy and the complete context information of the contained
tasks like e.g. description, used resources, involved persons etc. A TP hence repre-
sents a high level task as a step in an ad-hoc business process and corresponds to the
notion introduced in [18]. In the literature ‘task patterns’ are discussed also regarding
reusable structures for task models in the field of interactive systems design [6, 14,
15]. However, such observations focus on low-level interactive activities, like e.g.
searching, browsing or providing generic system input, and deviate from the notion of
TP that we use. In CTM, TPs can be enacted to create a new process instance and
execute it along the provided example flow. This flow can be altered by changing
suggested task recipients or reusing referenced TP hierarchies. Task evolution through
TPs’ adaptation and reuse is traced through task instance-based ancestor/descendant
relationships [19]. These enable end users to establish best-practices and to trace best-
practice deviations in different application cases.

4.2 Modeling Interactions on CTM Tasks

CTM enables end users to implicitly develop end-to-end process execution examples
as TDGs, which provide a shared context between all involved process participants.
This results in a need for enhanced system adaptability due to the different require-
ments towards sharing and managing task content in different processes. Task roles
are applied to the task model defined in [19] as optional XML elements in ‘task’ ele-
ments as shown on Figure 5. In CTM, task roles and the corresponding interaction
properties are stored as OL task item properties and tracked with the other task data to
the CTM server. Through this they define the interactions with CTM tasks throughout
the system. The implemented task roles are discussed in the following.

Creator: This role is taken by the users while they are creating a CTM task and de-
fines the interactions for entering the required task input. We suggest that modeling of
task item creation is important as users often define tasks in an underspecified manner
[1], which may lead to omission of important information and defer the task processing
later on. For example, if the needsDescription element (see Figure 5) is omitted or set
to false in the task model, this means that no description for the task may be specified.
If this element exists and its value is true, the OL dialog for creating a new CTM task
will not close until a description is specified. All other ‘needs’ elements function in an
analogous manner. The needsArtifact element can occur multiple times and accepts a
text command in Character Data (CDATA) form, specifying the artifacts (attachments)
which need to be added to a task upon creation. These commands represent standard
regular expressions for file names like e.g. ‘*.doc’ or ‘sales report.*’. For example, the
processing of a weekly sales order settlement in the textile company (cf. section 2) is
based completely on a customer sales report which is sent by the customer as a file in
Comma Separated Values (CSV) format. It is necessary to ensure that the report will
be attached in the initial process (root) task. This can be accomplished by adding a
needsArtifact element with ‘*.csv’ command text in the task model.

 A Method for Modeling Interactions on Task Representations 93

Complex type: task

taskName [1..1] String

taskId [1..1] String

taskRefId [0..1] String

description [0..1] String

time [0..1] String

owner [0..1] owner

delegation [0..*] delegation

ancestor [0..1] task

descendant [0..*] task

artifact [0..*] artifact

task [0..*] task

Element Occur. Type
Complex type:owner

user [1..1] user

canCancel [0..1] boolean

Element Occur. Type

Complex type: delegation

recipient [1..1] recipient

task [0..1] task

Element Occur. Type

canDelete [0..1] boolean

Complex type:recipient

user [1..1] user

autoAccept [0..1] boolean

Element Occur. Type

canForward [0..1] boolean

creator [0..1] creator

Complex type: creator

user [1..1] user

fromMail [0..1] mailInfo

Element Occur. Type

needsSubject [0..1] boolean

controller [0..*] controller

responsible [0..1] responsible

iObserver [0..*] iObserver

eObserver [0..*] eObserver

analyst [0..*] analyst

contributor [0..*] contributor

requester [0..1] requester

Complex type: mailInfo

needsFromAddress [0..1] boolean

needsSentDate [0..1] boolean

Element Occur. Type

needsSubject [0..1] boolean

needsDescription [0..1] boolean

needsDueDate [0..1] boolean

needsStartDate [0..1] boolean

needsArtifact [0..*] String

canViewProcess [0..1] boolean

canChangeVisibility [0..1] boolean

needsBody [0..1] boolean

needsAttachment [0..*] String

canSetPercent [0..1] boolean

canReopen [0..1] boolean

Fig. 5. Task model extensions with task roles - only the owner, recipient and creator roles are
given for simplicity. The task role extensions embody the user information where each role is
defined as a complex type, additionally allowing embedding of XML elements for specifying
concrete interactions. Grayed-out elements are discussed in the original task model [19].

The fromMail element defines the applying of email contents to a CTM task. Sev-
eral employees in the sales department of the textile company required to be able to
create a CTM task from an email over a mouse click. CTM hence enables creation of
a new (root) task from an email and application of email content to existing CTM
tasks. The latter operation is especially relevant for tasks, resulting from TP reuse.
When this operation is performed, all available tasks from the TDL are given in a tree
view with check boxes where the user can select target task(s) for the email content.
During this operation, the mailInfo properties take effect and define which data should
be transferred from the email. If for example the needsBody element exists and is set
to true, the email body will be transferred to the CTM task(s) as task description. The
needsAttachment element functions analogously to the needsArtifact element, dis-
cussed above, and accepts a text command in CDATA form. This allows filtering of
artifacts while transferring them from an email to a CTM task. For example, if a user
has applied a TP for weekly settlement of a customer sales order, the CSV sales report
file from the original execution (previous settlement) will be available in the CTM
root task. By applying the contents of a new customer email with attached CSV sales
report file to the reused root task and using the appropriate ‘*.csv’ filtering command,
the task content will be updated with the new sales report from the customer email,
excluding any email attachments with other file extensions. The needsFromAddress
and needsSentDate are true by default. They transfer the corresponding sender and

94 T. Stoitsev and S. Scheidl

sent-date information as OL task properties to activate a control for searching for the
original email in the common OL mail folders.

Owner: This role is generally taken by the users when they have created (or, in case
of delegation, received and accepted) a CTM task in the CTM TDL and have to proc-
ess it. This role comprises all necessary interactions for processing a task in a BTM
system. CTM supports modeling of several interactions on active task representations.
It can be specified for example, if a user should be able to cancel an active task, to set
the percent complete of tasks with sub tasks (alternative is to automatically increase
percentage of a parent task based on sum of sub tasks’ percentage), delete a task or
reopen a completed task (cf. Figure 5). The set of supported actions can be limited
due to limited functionality of a system or due to intentional limitations. For example,
we set the delete capability to false during a case study at the textile production com-
pany to deactivate any delete controls on tasks and preserve the whole amount of
generated ad-hoc tasks for evaluation. The reopen capability is still unsupported in
CTM due to the required complex compensation handling in TDGs.

Recipient: This role is taken by a user, which receives a CTM task. If the autoAccept
option (cf. Figure 5) is true, a requested task will be automatically inserted in the
recipient’s TDL. This option is helpful e.g. for work distribution in support center
scenarios as we observed them at the software company (cf. section 2), where the
number of error reports handled by each employee and in the whole support center are
monitored and tasks are automatically delegated according to the work load. The
canForward option is also applicable in such scenarios and specifies, if the recipient
is allowed to forward a requested task to another person. The canViewProcess ele-
ment defines if a task recipient should be able to view the overall TDG of a process,
to which the received task belongs. Such viewing can be deactivated, e.g. if a person
from a given department is asked to accomplish a task in the context of a confidential
process, managed in another department and containing sensitive customer data. The
canChangeVisibility option enables administration of the visibility of recipients’ tasks
in the TDG. If this option is true, the recipient will be allowed to specify if their user
container will appear blank in the TDG (cf. Figure 4) or it will show their personal
task hierarchy.

Requester: A user is taking this role, while they are delegating a task. An element
canSuggestPattern enables a requester to add (attach) suggested TPs as recommenda-
tions for the further task processing in a CTM request message. A canSetRecipient-
Properties element defines if a requester should be able to customize the recipients’
properties described above, i.e. to specify if the recipients are allowed to view the
process tree and to change the visibility of the resulting accepted tasks’ hierarchies.
This is accomplished in a CTM property dialog, which can be displayed if the above
property is set to ‘true’.

Controller: In CTM controllers can be explicitly set in an additional dialog, which
can be shown on CTM tasks in the TDL or during TP editing (explicit task modeling).
Controllers are specified based on their user email address. When a user opens a TDG
for an active process, they log in with their email address and the system determines
the tasks, for which the user is specified as controller. These tasks receive further
buttons in the web form, which allow controllers to add comments, increase priority
or trigger task escalations (enabled/disabled accordingly through canAddComment,
canIncreasePriority and canTriggerEscalations elements in the model).

 A Method for Modeling Interactions on Task Representations 95

Contributor: Contributors are explicitly set in tasks through additional property
dialogs accessible from the TDL and during TP editing, and are as well specified
through a user email address. When a user logs in to view a given TDG, the task
nodes for which they are specified as contributors contain additional controls, which
allow them to upload attachments in the artifacts list and to set comments on tasks
(enabled through canAddAttachments and canAddComments elements in the model).
Controls in task nodes for changing due dates, priority and triggering escalations will
not be active as these are only relevant for Controllers.

Responsible: This role results from the task owner role after a task is delegated, and
contains properties for automated notifications on task changes, like e.g. percent
complete changes, structure changes (sub task creation), content changes (subject or
description), due date changes, delegations. The relevant elements in the task model
are respectively: notifyOnPercentComplete, notifyOnSubjectChange, notifyOn-
DueDateChange, notifyOnBrakedown. Further properties define if the responsible
should be able to cancel, complete or delete a task (canCancelFromAbove, canCom-
pleteFromAbove, canDeleteFromAbove), which results in cancellation, deletion or
completion of a delegated task and the underlying task hierarchy.

Internal & External Observer (i/eObserver): These roles are set explicitly on tasks
based on the user email address in the TDL or during TP editing. When the users log in
for viewing a TDG, CTM determines their role and shows different view of tasks for
the different roles. Internal observers may be allowed to view task descriptions, at-
tachments or task delegation dialogs, i.e. through properties respectively canViewDe-
scription, canViewAttachments, canViewDialog. External observers may be allowed to
view only high level description of the processes where user containers are substituted
with generalized containers for departments, which are for example processing the
customer (external observer) order (if property canViewPersonalizedTaskList is false).

Analyst: This role comprises interactions for extracting reusable task and process
knowledge. This includes e.g. interactions for viewing the task execution history
(changes) and task evolution (ancestors/descendants), for extracting TPs and publish-
ing them to central TP repositories. The relevant properties in the task model are: can-
ViewDialog, canViewExecutionHistory, canViewEvolutionHistory, canExtractTDG,
canSaveGlobalTP. The controls for the latter two operations are not enabled for other
users, to avoid generation of multiple, concurrent best-practice definitions. This role
basically targets at consolidation of the captured process experience.

4.3 Summary

In CTM some task roles (controller, contributor, internal and external observer) can
be explicitly defined during task execution, while work is managed and user-defined
task hierarchies evolve. This can be accomplished in property dialogs, where users
can select the appropriate roles on tasks, assign them to different users based on email
addresses and set the appropriate options for interactions in CTM in the scope of a
given task role. This results in runtime task modeling of the interactions on the evolv-
ing weakly-structured processes. Other task roles are implicitly taken over by the
system users, while they are creating CTM tasks (creator), managing them in their
TDL (owner), delegating tasks (requester), receiving tasks (recipient), managing
delegated tasks (responsible) or extracting best-practice definitions (analyst). The

96 T. Stoitsev and S. Scheidl

interactions, necessary to act in these roles and in the previously mentioned explicit
roles, can be predefined in the task model of a TP. When this TP is applied (enacted),
the pre-modeled interactive behavior is activated for the tasks in the resulting ad-hoc
process instance.

Task roles enable enhanced flexibility of BTM systems, as they provide an addi-
tional abstraction layer. While the interactions are defined and modeled on a generic
level through the task roles, these roles can be mapped to organizational roles to en-
able domain-specific adaptations of the BTM system. For example, an organizational
role ‘manager’ can be mapped to the task role controller in the DB on the CTM
server. This will provide the corresponding interactions on a task in the TDG when a
user with manager permissions logs in. If the ‘manager’ role is further mapped to the
analyst task role, additional interactions will be enabled, through which a manager
will be able to extract TPs from the task tracking repository and to store them as
global best-practice prescriptions.

5 Conclusions

In the presented paper we describe a method for modeling interactions on task repre-
sentations in BTM systems, which uses generic task-centric roles to enable domain-
independent, flexible adaptation of the user interface and the available interactions on
task representations. We have shown how task roles can be enriched with a set of
application-specific interaction descriptions, supporting various aspects of task man-
agement – from task creation to delegation, controlling, contributing to tasks and
analyzing user-defined task hierarchies. The study reveals how task roles can provide
an abstracted, high-level view for modeling interactions from significantly different
perspectives of BTM system usage and can result in enhanced system flexibility.

As further research topics we consider the adding of runtime-dependent interaction
properties in the scope of task roles and the cascading of (parent) task properties to
emerging (sub)tasks during process execution.

Acknowledgments

The reported work was supported financially by the German “Federal Ministry of
Education and Research” (BMBF, project EUDISMES, number 01 IS E03 C). We
thank to all participants in our user studies for their time and cooperation.

References

1. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., Ducheneaut, N.: What a To-Do:
Studies of Task Management towards the Design of a Personal Task List Manager. In: CHI
2004, pp. 735–742. ACM Press, New York (2004)

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-
gan Kaufmann, San Francisco (1998)

3. Button, G.: What’s Wrong With Speech-Act Theory. Computer Supported Cooperative
Work 3(1), 39–42 (1994)

4. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., Mehanjiev, N.: Meta-Design: A Manifesto
for End-User Development. Communication of the ACM 47(9) (September 2004)

 A Method for Modeling Interactions on Task Representations 97

5. Flynn, P., Curran, K., Lunney, T.: A decision support system for telecommunications. In-
ternational Journal of Network Management 12(2), 69–80 (2002)

6. Gaffar, A., Sinnig, D., Seffah, A., Forbig, P.: Modeling patterns for task models. In: Pro-
ceedings of the 3rd annual Conference on Task Models and Diagrams, pp. 99–104. ACM
Press, New York (2004)

7. Grebner, O., Ong, E., Riss, U., Brunzel, M., Bernardi, A., Roth-Berghofer, T.: Task Man-
agement Model,
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main1/D3-1

8. John, B., Kieras, D.: The GOMS family of analysis techniques: Comparison and contrast.
ACM Transactions on Computer-Human Interaction 3(4), 320–351 (1996)

9. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681. Springer, Hei-
delberg (2003)

10. Lieberman, H.: Your Wish is My Command: Programming by Example. Morgan Kauf-
mann, San Francisco (2001)

11. Lieberman, H., Paterno, F., Wulf, V.: End-User Development. Springer, Heidelberg (2006)
12. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: pressing the

issues with buttons. In: Proc. CHI 1990, pp. 175–182. ACM Press, New York (1990)
13. Molina, A., Redondo, M., Ortega, M.: Applying Pattern-Based Techniques to Design

Groupware Applications. In: Luo, Y. (ed.) CDVE 2006. LNCS, vol. 4101, pp. 225–233.
Springer, Heidelberg (2006)

14. Palanque, P., Basnyat, S.: Task Patterns for Taking into Account in an Efficient and System-
atic Way Both Standard and Abnormal User Behaviour. In: IFIP 13.5 Working Conference
on Human Error, Safety and Systems Development, Toulouse, France, pp. 109–130 (2004)

15. Paternó, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (2000)

16. Paterno, F., Mancini, S., Meniconi, S.: ConcurTaskTree: a diagrammatic notation for specifying
Task Models. In: Proceedings Interact 1997, pp. 362–369. Chapman & Hall, Boca Raton (1997)

17. Rabelo, L., Eskandari, H., Shalan, T., Helal, M.: Supporting simulation-based decision
making with the use of AHP analysis. In: Proceedings of the 37th conference on Winter
simulation, pp. 2042–2051 (2005)

18. Riss, U., Rickayzen, A., Maus, H., v. d. Aalst, W.: Challenges for Business Process and
Task Managemen. Journal of Universal Knowledge Management 0(2), 77–100 (2005)

19. Stoitsev, T., Scheidl, S., Spahn, M.: A Framework for Light-Weight Composition and
Management of Ad-Hoc Business Processes. In: Winckler, M., Johnson, H., Palanque, P.
(eds.) TAMODIA 2007. LNCS, vol. 4849. Springer, Heidelberg (2007)

20. Stoitsev, T., Scheidl, S., Flentge, F., Mühlhäuser, M.: Enabling End Users to Proactively
Tailor Underspecified, Human-Centric Business Processes. In: Proceedings of the 10th In-
ternational Conference on Enterprise Information Systems, Barcelona, Spain (2008)

21. Veer, G., v. d. Lenting, B., Bergevoet, B.: GTA: Groupware task analysis - modeling com-
plexity. Acta Psychologica 91, 297–322 (1996)

22. Wiig, K.M.: People-focused knowledge management: how effective decision making leads
to corporate success. Elsevier Butterworth–Heinemann (2004)

23. Winter, A.F., Ammenwerth, E., Bott, O.J., Brigl, B., Buchauer, A., Gräber, S., Grant, A.,
Häber, A., Hasselbring, W., Haux, R., Heinrich, A., Janssen, H., Kock, I., Penger, O.-S.,
Prokosch, H.-U., Terstappen, A., Winter, A.: Strategic information management plans: the
basis for systematic information management in hospitals. International Journal of Medical
Informatics 64(2), 99–109 (2001)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 98–109, 2008.
© IFIP International Federation for Information Processing 2008

AMBOSS: A Task Modeling Approach
for Safety-Critical Systems

Matthias Giese1, Tomasz Mistrzyk2, Andreas Pfau1, Gerd Szwillus1,
and Michael von Detten1

1 University Paderborn, Institute for Computer Science, 33102 Paderborn, Germany
2 OFFIS e. V., 26121 Oldenburg, Germany

{flipsi,andypf,szwillus,austin}@upb.de, Tomasz.Mistrzyk@offis.de

Abstract. In a recent project we created AMBOSS, a task modeling environ-
ment taking into account the special needs for safety-critical socio-technical
systems. An AMBOSS task model allows the specification of relevant informa-
tion concerning safety aspects. To achieve this we complemented task models
with additional information elements and appropriate structures. These refer
primarily to aspects of timing, spatial information, and communication. In this
paper we give an introductory overview about AMBOSS and its contribution to
modeling safety-critical systems. In addition, we present AmbossA, the visual
pattern language for detecting particular constellations of interest within a task
model.

Keywords: task modeling, safety-critical systems, socio-technical systems, task
editor, simulation, task patterns.

1 Introduction

Task modeling approaches such as ([12], [9], [17], [2], and [5]) primarily concentrate
on the hierarchical decomposition of tasks into subtasks and their relative ordering
with temporal relations. Task models are typically used in the early phases of system
design or as documentation method for the result of task analyses. The models are
semi-formal in nature in the sense that they formally structure (hierarchy, temporal
relations) informal elements (task descriptions). They have been used in system de-
sign ([10], [8]) or user interface design ([14], [6], [18]), but are also used increasingly
for the design and analysis of workplace situations [17].

An important concept in most task modeling approaches concerns the actors per-
forming the tasks. In CTTE [12], for example, explicitly identified roles co-operate in
the concurrent performance of a highly structured task. An appropriate role or user
model is included in all approaches mentioned above. Using these models, it is possi-
ble to describe task execution in complex socio-technical systems. These systems on
one hand include technical components, such as computers, transport devices, tele-
communication devices and production machines, and on the other hand they incorpo-
rate human actors, who are performing manual tasks and interactive tasks, i.e. are
using machines to support their work. Typical examples are, for instance, execution of

 AMBOSS: A Task Modeling Approach for Safety-Critical Systems 99

routine maintenance procedures in a hydro power plant, or blood sample processing in
a hospital. Both examples are performed by a group of co-operating human actors
who are working both with technical systems and without them.

Specifying a task model for such a system documents the order of and the rationale
behind the planning and structuring of the tasks to be performed. This is useful for
analyzing an existing socio-technical system, or to start the design of a new not yet
existing process. If in addition the socio-technical system is a safety-critical system
the task model can be helpful in detecting potential problems created by, for example,
inadequate task order, disproportionate distribution of workloads between actors, or
lack of time in critical phases of task execution.

In a recent project we created AMBOSS [1], a task modeling environment taking
into account the special needs for safety-critical socio-technical systems. An AM-
BOSS task model allows the specification of risk assessment factors, barriers protect-
ing human beings and material value from harm [7], and the information flow
between tasks. AMBOSS allows the specification of relevant information concerning
these and additional issues. In this paper, however, we want to focus on some aspects
which have not yet been integrated with task modeling to that extent before and which
are especially relevant for socio-technical safety-critical systems: timing, topology,
and communication.

A correct timing of co-operative actions is frequently vital for the correct and safe
execution of safety-critical processes. We deal with this aspect within the simulation
component of AMBOSS, which takes into account preconditions for tasks and their
explicit link with barriers sheltering man and material. An example from health care
would be to make sure that the x-ray device is only switched on after the operator has
left the room. In addition, AMBOSS allows the specification of the spatial behavior of
a process, i.e. to say where some task is performed, which objects are available at this
position, and whether objects are transferred from one room to another during task
execution. As an example consider the fact that it has a crucial influence on the end
result whether a patient is in the neighboring room or far away from all nurses. While
both time and space may be irrelevant for a large number of task models, as they are
either trivial or self-evident, there are important cases of safety-critical processes
depending on this type of information.

This applies even more so to the aspect of communication between the actors in a
task model. Special emphasis has been given within AMBOSS to model possible
variants of the properties of communication as needed for task execution. In co-
operative processes it is often the case that an actor (man or machine) performing a
subtask needs information from another actor performing another subtask. This im-
plies task dependencies, with respect to task ordering, task triggering, and the quality
of the communication between tasks. As an example, we analyzed a medication
dosage process based on a blood sample, which included communication via hand-
written notes, database queries, and casually uttered oral remarks between the actors.

Enriching a task-model with more detail burdens the designer or analyzer of a sys-
tem, i.e. the AMBOSS user, with an increasingly complicated model which is hard to
master. Task models tend to grow a lot when applied to real-world cases, and there is
no use in specifying to great detail, when the user loses control over an outgrowing
model. This is why we created a possibility to specify patterns of task model
elements, and to automatically check their existence within a large task model. The

100 M. Giese et al.

“AmbossA” language is a visual language which can be used to define “critical” or
“interesting” patterns within task models and then apply a search function to detect or
negate their existence in a model.

We will deal with the aspects mentioned in the subsequent chapters and conclude
with a statement on the current state of the development. The features described here
are all implemented in the current version, with the exception of the procedure for
communication analysis, as sketched out in chapter 5. The current version of AM-
BOSS is freely available for non-commercial use for download on the AMBOSS
website [1].

2 The Task Modeling Environment AMBOSS

AMBOSS is a task modeling environment following the traditional approach of hier-
archical task structures with temporary relations between subtasks. Hence, AMBOSS
provides the typical tree-based editing functions, such as adding a child node or a
sister node; apart from that, however, we allow direct manipulation of nodes and
connections for easy structure manipulation tasks. A task node, for instance, can be
placed into the drawing area without being connected at all, and it can later on be
linked to other nodes. Although liberal in the interaction style, structure constraints
are ensured by checks in the background, inhibiting for instance the creation of cy-
cles. The order of subtasks is defined by the relative placement around the parent
node; hence the order can be modified by simply shifting the child nodes into the
correct order. This concept has been implemented in K-MADe [3] as well, while CTT
[12] and VTMB [5] are restricted to tree operations. A similar freedom of interaction
is available in Tamot [9] without underlying checks being performed.

AMBOSS goes far beyond the traditional task modeling approach. Based on its
implementation with plug-ins to the Eclipse framework, the editor provides flexible
views on additional information necessary for modeling safety-critical systems. The
elements included deal with roles, barriers, task objects, risk factors, and messages.
As the Eclipse framework enables a flexible customized arrangement of views, the
user is able to open, maximize, minimize, or close whatever view is needed for a
specific analysis task.

AMBOSS allows the user to implement hierarchical role specifications in order to
appoint the performing actor to a task and to stress its duties and abilities. Similar
approaches were already mentioned in other environments ([12], [5], and [3]).

There are three basic types of actors in a socio-technical system: human, system,
and abstract – the last describing tasks performed in co-operation between man and
machine. In addition, we can specify subtypes of actors (such as physician or nurse)
and instances of actors (such as the nurse Ms. Smith) as refinements of the roles hu-
man and system. When defining a role for a task this is consequently inherited by the
subtasks and propagates up to the parent nodes in the task tree. In addition to being an
actor within a task, a role can also be specified as being the person responsible for the
task (such as for the correct treatment of a blood sample). A screenshot of the AM-
BOSS environment is shown in Fig. 1.

 AMBOSS: A Task Modeling Approach for Safety-Critical Systems 101

Fig. 1. The AMBOSS Environment

A concept showing up in several approaches for modeling safety-critical systems is
the concept of barriers [7]. Barriers are means to prevent harm from human beings
and material while operating a system; examples are the lead apron sheltering the
patient and the operator from X-ray radiation, or the law against crossing a red traffic
light. Barriers are linked in different ways to task performance: barriers can ensure
that safety-critical tasks do not harm life or material; tasks can activate a barrier (such
as putting on the lead apron), or deactivate it (e.g. by switching of a traffic light for
maintenance). Hence, AMBOSS allows the specification of relations like these be-
tween barriers and tasks, and they are evaluated an can be “observed” during the
simulation included in the environment (see chapter 3 below).

In addition, tasks can be rated as being critical. A numerical risk factor is assigned,
based on estimations of probability, severity of consequences, and detectability on a
scale from 1 to 10 [16]. By multiplying the numbers the overall factor is computed,
which enables a summative evaluation of the risk involved. Another important influ-
ential factor when executing safety-critical tasks is timing. Hence, we allow the as-
signment of timing information to tasks, specifying minimal, maximal, or average
task durations. This timing information is also used during the simulation of the mod-
els. In addition, AMBOSS incorporates a task object concept, which means that the
user can specify which objects are modified by a task.

Once the model is defined, the user can start a simulation which takes into account
the task hierarchy, temporal relations, conditions, barriers, message flow, and trigger-
ing through communication. The user can observe, which task (and actor) is sending
what kind of information to whom, and whether or not triggering information has
been sent or not. As the simulation also reflects the activation and deactivation of
barriers, the user in every situation of the simulation can tell whether a necessary
barrier is in place while a safety-critical task is executed. To compare and analyze
different threads of execution one can save scenarios and watch their simulation re-
peatedly. Task model simulation has been done before ([9], [5], [3]) in part including
the scenario feature mentioned as well, with the special case of K-MADe [3] which is

102 M. Giese et al.

a particularly detailed and rich model. None of these, however, reflects the needs of
safety-critical systems including the communication issues together with timing and
spatial behavior as much as AMBOSS does.

3 Simulation of Timing and Conditions

The ability to simulate a task model is an essential tool in order to assure that the
model behaves as intended and to control the behavior in a dynamic environment
before the system is actually built. During the simulation the user chooses the tasks
which he wants to start and to stop according to the choices presented by the simula-
tor. These choices depend on the temporal relations between the tasks and are updated
after each simulation step. Temporal relations are assigned to a task and control the
course of action of its subtasks. AMBOSS contains six different temporal relations:

• SEQ: The subtasks are performed in a fixed sequence from left to right
• SER: The subtasks are performed in an arbitrary sequence
• PAR: The subtasks can start and stop in an inordinate way.
• SIM: All subtasks have to start before any subtask may stop.
• ALT: Exactly one subtask is performed.
• ATOM: This task has no subtasks.

In addition, the simulator of AMBOSS focuses on the integration of safety relevant

aspects of the task model by controlling the state of the barriers and considering the
flow of communication. Fig. 2 shows an AMBOSS simulator screen-shot. The system
allows the user to view all parameters which influence the current task without
switching back to AMBOSS task modeling view. As shown on the bottom left of
Fig. 2 the user is informed about the objects being manipulated by the task, the rooms
in which the task occurs (see chapter 4), the roles performing the task, the communi-
cation flow of the task and the barriers protecting the task from hazards. Furthermore
the user is able to recognize at a glance which tasks are executed concurrently as
shown in the middle area of Fig. 2. Task execution is symbolized by rectangles, where
the ordering from left to right coincides with the order of performance. The user
operates the simulator by starting and stopping tasks. This is done by double clicking
the name of a task in the lists at the top left.

In order to guide the user’s attention to the safety critical elements of a system it is
possible to define certain preconditions for a task. If a task’s precondition is not met
the user will not be able to start it during the simulation. There are two different types
of preconditions.

Message preconditions denote the concept that a message containing certain infor-
mation is necessary to trigger a task, and allow its correct performance. The simulator
keeps track of communication that has already taken place and enables the start of
tasks accordingly. The user is kept informed about the progression of the simulation
including the communication textually (see bottom right of Fig. 2). The simulator also
checks for some mistakes being made during the modeling phase, such as if a mes-
sage requires feedback but the feedback has not been defined yet.

 AMBOSS: A Task Modeling Approach for Safety-Critical Systems 103

The second type of preconditions refers to dynamical, “enactable” barriers. An en-
actable barrier is a barrier which does not achieve its protective impact all the time but
has to be activated to do its service. This activation is being accomplished during the
performance of a task. An example for this is X-ray protective clothing which has to
be put on before it can render its service. During the simulation the user can check
whether the simulated chain of action led to a situation in which the task can be per-
formed safely.

Fig. 2. AMBOSS Simulator Overview

Another feature of the AMBOSS simulator is the inclusion of scenarios. A scenario
is an instance of the task model, i.e. one concrete task execution sequence to perform
the complete task described. The user is able to save these scenarios and to compare
the different effects of his decisions during the simulation.

With these possibilities it is possible to check safety relevant aspects of a task be-
fore a system is even built or to inspect the work flow of an existing system. The user
can experiment with the different possible chains of events and compare the different
effects of the chosen scenarios on the execution of the whole task. The simulator
stresses the need to provide security for the performance of the tasks and incites the
user to deal with potential hazards. This ultimately leads to an improvement of the
way a task is performed and the elimination of the weak points of a system.

104 M. Giese et al.

4 Spatial Behavior

In most of all considered models which represent safety critical systems or scenarios
one of the important aspects is topology, i.e. a specification of the spatial relations
between different task execution steps. This deals with the “positions” of both actors
and material or objects, needed for the task. Frequently, there are situations where
tasks are performed in a certain position of the work space (e.g. directly aside an x-ray
device) which are harmless as long as the work space is “clean” (e.g. the x-ray device
is off) and critical when the work space is “contaminated” (e.g. the x-ray device is
working). To capture dependencies like these we introduced a rooms concept within
AMBOSS. A room in this abstract sense can be a physical chamber in a building (e.g.
an operating theatre), but it can also be a complete floor in a hospital, or an airplane
hangar on an aircraft carrier. The limits of a room cannot be defined generally; they
are subject to the abstraction process during modeling. For understanding of the con-
cept, the idea of an actual room is a good start though.

A room in AMBOSS has different static properties, a unique name to identify the
element, an informal textual description, a maximum number of persons that fit into a
room, and a flag that indicates, whether this room is lockable or not.

More important are the dynamic properties, which specify the relationship between
a room and the tasks, objects, roles and barriers.

To take into account that every task is performed at a certain place, the user can
specify this relationship either from the point of view of the task or of the room. For
every room the user can relate the tasks, which are performed within it. On the other
hand, for every task it is possible to select the rooms, where the task takes place. One
inherent property of the room concept is that every task is executed in at most one
room.

Objects of the task model can be assigned to rooms in a similar bidirectional way.
Objects, other than the task themselves, however, can be moved from one room to the
other. So, when an object is specified, the user can specify whether the object is mov-
able or not. If it is not, the user can relate it to one specific room, where this object is
located (such as the x-ray device in the x-ray room). If the object is movable, the user
has to specify, in which rooms the object can be located, and in which ones the object
is not allowed because of procedural or factual restrictions (such as a free-to-move
perfusor device, which is allowed in the patients’ rooms but not in the operating
room).

In some cases, it is important to express that not every person has access to a room.
This is represented with the room-role-relationship. For every room the user can se-
lect the roles, which have either the permission to enter the room, a restricted kind of
permission or no permission to enter.

During the modeling process, AMBOSS checks whether the user is about to create
an invalid situation. For instance, when an object has already a fix assignment to one
room, it cannot have an assignment to other rooms as well. Other validation checks
are performed dynamically during the simulation. If there are any conflicts in depend-
ent relationships, the simulator will indicate this. For instance, if some roles are
performing a certain task in a certain room, and some of the roles do not have the
permission to enter the room, the simulator will indicate that conflict.

 AMBOSS: A Task Modeling Approach for Safety-Critical Systems 105

Using this concept AMBOSS is able to handle topological aspects and relation-
ships that may be important in safety critical systems. We see this approach as a first
step in this direction, which has to be developed further. We could, however, success-
fully model the safety-critical process of the take-off process of airplanes from an
aircraft carrier, where the location of material and human actors is of vital importance.

5 Analyzing Communication

Deficiencies in the communication between the actors of a socio-technical system are
recognized as a major cause for critical incidents and accidents [4]. Therefore the
integration of this aspect into the task model represents an important expansion for
our approach. A lot of problems in safety-critical socio-technical systems have their
roots in communication problems. An improper sequence of task performance, for
instance, could be caused by missing communication (too early, too late); a task could
be mal-performed by lack of feedback (misunderstanding vital information), which
could also be the case when problematic situations are unobservable (wrong display).
On a higher level of abstraction, tasks could put an unbalanced strain on actors, be-
cause they do not communicate enough.

Some approaches like CTTE [12] or TaskArchitect [17] integrate communication
to some degree as a part of the model. However, they do not take into account rele-
vant parameters of the communication, such as triggering mechanisms, criticality,
necessity of feedback, kind of medium or content. Within AMBOSS we included the
possibility to specify communication and its parameters and developed an appropriate
method of analysis.

As a fundamental theoretical model, we choose the information-communication
model of Shannon and Weaver. In this model communication is seen as exchange of
information (signals) between transmitter and receiver. This excludes a priori a large
part of aspects otherwise coming under the term of communication, such as psycho-
logical, social, or ethical issues. Basing our concept on information theory restricts
communication in our model to the flow of information. In this context, every task
and its associated role in a model can be sender and recipient of information. The
most important circumstances for good communication (especially important when
taking into account safety critical systems) are, that the information is correct, that the
information is complete and its transmission cannot be changed by external factors,
and that the information is correctly interpreted by the recipient.

The examination of success or failure of communication necessitates considering
the following aspects of information flow: the actors (transmitter, receiver), the in-
formation itself, the transmission medium, supervising control structures, timing, and
the environmental situation. Most of these parameters can be captured in an AM-
BOSS model, with the exception of the last, which is a very open property. Commu-
nication in AMBOSS is dealt with during the modeling phase, and taken into account
by the simulator, as mentioned before. Apart from that, however, we developed an
analysis process of the communication in socio-technical systems which will be
integrated into our approach of the extended task modeling. This process goes beyond
the evaluation of single communication paths but provides an overall assessment of
the communication situation in the given task model and hints directly at weak points.

106 M. Giese et al.

The analysis consists of four steps, which we sketch out only roughly here, details
can be found in [11]. In the first step, all communication sequences are classified into
one of three groups of criticality. This is done based on the critical status of the sender
and the receiver which provides a basis for the priority of the fact-finding. Second, we
look closer on particular message sequence. This exploration contains a binary
evaluation of each sequence from the point of view of both partners. This part of the
analysis already shows the most important weaknesses of the communication flow.
After identifying the communication weaknesses in the system we start with the
qualitative judgment. Based on this judgment we can give a more informative state-
ment about each parameter within the different sequences of the communication flow.
Third, the aggregation of the identified weak spots in the system takes place. The
analyst is able to recognize which parameters are affected and therefore should be
modified to improve the safety of the whole communication flow. Finally, the analyst
can specify at which position of the communication flow the system shows deviations
from the expected procedure. Finally, it is possible to derive suggestions that are clas-
sified along the single communication parameters for a proposed improvement.

By applying this analysis method to real-world case studies, we found out that it is
especially valuable for detecting latent errors in a system. These are errors which have
been “done” much earlier and in general by completely different people than the ones
that suffer from the consequences when actually performing a task. An example is the
erroneous adjustment of a perfusor which happened due to a blurred communication
protocol between the responsible actors. The definition of the protocol was identified
as a latent error during the communication analysis.

Currently the method is based on AMBOSS but is not yet formally integrated. The
emphasis up to now was to define the single steps. We will work on a tool, however,
to help the analyst to perform the analysis on AMBOSS models.

6 Defining and Finding Patterns

The enhancements of task modeling approaches within AMBOSS presented so far,
add more information and detail to a potentially already complex model. The analyst
needs to master the complexity of this model and while entering more detail informa-
tion, he might lose the overview. In situations, where the detail information specified
in different places in its combination creates a critical situation the following ap-
proach referred to as AmbossA helps to detect these constellations.

AmbossA is a visual query language which enables the user to define certain rela-
tionship structures between AMBOSS elements and to search for them within a task
model. In AMBOSS all elements have or do not have a connection with one another.
For example, a message has a sender and a receiver, a role executes or does not exe-
cute a task etc. Hence, a task model can be seen as a complex structure of connections
between the single elements. AmbossA allows the user to visually create patterns
connecting AMBOSS elements such as tasks, roles, object, messages etc. and thus
characterizing relationship structures. Given such a pattern, the system localizes the
pattern in the task model. If the pattern represents a pathological or dangerous con-
stellation, or some other type of “weak spot”, the analyst is directly guided to these
problem areas.

 AMBOSS: A Task Modeling Approach for Safety-Critical Systems 107

To specify a pattern, AmbossA provides certain visual elements (shown in Fig. 3
on the left), corresponding to the elements which can be used within AMBOSS to
specify a task model. These can be linked visually with relations of objects, denoting
certain semantic relations, such as a role executing a task, or a message triggering a
task (see Fig. 3 on the top right).

Fig. 3. Visual elements (left) and example relations (right) in AmbossA

Using these elements, the user can find all tasks executed by a certain role, or all
messages triggering a certain task etc. In addition to abstract representatives for con-
crete elements in the task model, the cloud element provides a powerful mechanism
for finding certain constellations. If two elements are connected with the cloud, then
they are connected “somehow”, and all possible paths between the two elements are
considered. Hence, the cloud plays the role of a wild card symbol in the diagram lan-
guage. For example, it is possible to search for any relationship between a specific
role (“Müller”) and any barrier, as depicted in Fig. 3 on the bottom right.

In combination with the logical operators AND, OR and NOT, the user can express
complex constellations of AMBOSS elements and search for them. In the diagram
shown in Fig. 4, all situations are found where a message is sent from either two tasks
or a role to a target task.

The result of such a query is a table of elements matching the given diagram. In its
current version the user can skip through this list and is directly shown the position of
the situation in the task model. In addition, the match currently selected in this list is
shown as a highlighted substructure in the AMBOSS editor.

The speed of the parser process directly depends on the abstraction level of the rela-
tionship pattern. The more abstract the pattern is, the more time the search algorithm
needs. The most challenging situation for the algorithm arises if the relationship pattern
contains several „clouds”. However, for practical purposes we found the runtime be-
havior perfectly acceptable. More work will have to be done to develop this idea fur-
ther towards a tool to administer a library of “good” or “bad” patterns, which could
then automatically be applied to task models of safety-critical socio-technical systems.

108 M. Giese et al.

Fig. 4. A visual query in AmbossA

7 Conclusions

The current state of AMBOSS is that the editing component and the simulator com-
prise all elements mentioned in chapters 3 and 4, and the communication parameters
mentioned in chapter 5. The pattern matching algorithm, resp. the visual language
AmbossA is fully functional. As mentioned in chapter 5, the communication analysis
algorithm is a recent development; the integration with AMBOSS is under way.

Overall, the approach provides a rich set of enhancements over classical task mod-
els which are especially useful for safety-critical socio-technical systems. As single
concepts they exist in the rich literature on safety-critical systems but they have not
been integrated with the concepts of task modeling before. The inclusion of a power-
ful simulator taking all these elements into account enables the analyst to get an over-
view of effects such as information flow, barrier dynamics, role distribution, and
spatial relations during task execution.

AMBOSS invites enhancements, based on its underlying model structures, as we
implemented a programming interface to link new analysis tools to the environment.
We exploit this in a first co-operation with the developers of PetShop ([2], [13], and
[15]), to link task model simulation and user interface prototyping during runtime.

In our view, the combination of task modeling and safety-critical analysis con-
cepts, as instantiated in AMBOSS, is a promising approach. It takes procedural
knowledge of a work process into account and links it to the otherwise unrelated
safety aspects. The task model contains knowledge about timing, dependencies of
tasks, modified objects, sent messages, etc. – hence it can provide valuable informa-
tion where targeted safety improvements for those concerned can be implemented.

References

1. Amboss: Homepage of the AMBOSS project, Universität Paderborn, Institut für Infor-
matik (accessed April 2008), http://wwwcs.upb.de/cs/ag-szwillus/lehre/
ws05_06/PG/PGAMBOSS/index.php

2. Barboni, E., Navarre, D., Palanque, P., et al.: A Model-Based Tool for the Formal Model-
ling and Simulation of Interactive Safety Critical Embedded Systems. In: Proceedings of
HCI aero conference (Demonstration) (HCI Aero 2006), Seattle, USA (September 2006)

 AMBOSS: A Task Modeling Approach for Safety-Critical Systems 109

3. Baron, M., Lucquiaud, V., Autard, D., et al.: K-MADe: un environement pour le noyau du
modèle de description de l’activité. In: Proceedings of the 18th French-speaking confer-
ence on Human-computer interaction, Montreal, Canada, April 18-21 (2006)

4. Bellamy, L.J., Geyer, T.A.W.: Development of a working model of how human factors,
safety management systems and wider organisational issues fit together. Health and Safety
Executive Report, RR543 (2007), http://www.hse.gov.uk/research/rrpdf/
rr543.pdf (accessed, June 2007)

5. Biere, M., Bomsdorf, B., Szwillus, G.: Specification and simulation of task models with
VTMB. In: CHI 1999 Extended Abstracts on Human Factors in Computing Systems, Pitts-
burgh, Pennsylvania, May 15 - 20, 1999. ACM Press, New York (1999)

6. Guitare: GUITARE Homepage (Last access: April 2008),
http://giove.cnuce.cnr.it/Guitare/

7. Hollnagel, E.: Barrier analysis and accident prevention. Aldershot, UK, Ashgate (2004)
8. Isolde, Isolde Homepage (Last Access: April 2008),

http://www.ict.csiro.au/staff/Cecile.Paris/from-cmis/
projects/Isolde/scientificProgress.htm

9. Lu, S., Paris, C., Vander Linden, K.: Tamot: Towards a Flexible Task Modeling Tool. In:
Proceedings of Human Factors, Melbourne, Australia, November 25-27 (2002)

10. Mefisto: Mefisto Homepage (Last Access: April 2008), http://giove.cnuce.
cnr.it/mefisto.html

11. Mistrzyk, T.: Analysis of Communication in Hierarchical Task Models focused on Safety
Critical Systems. Dissertation, University of Paderborn, Institute of Computer Science (in
print) (2008)

12. Mori, G., Paternò, F., Santoro, C.: CTTE: support for developing and analyzing task mod-
els for interactive system design. IEEE Trans. Softw. Eng. 28(8), 797–813 (2002)

13. Navarre, D., Palanque, P., Barboni, E., et al.: On the Benefit of Synergistic Model-Based
Approach for Safety Critical Interactive System Testing. In: Winckler, M., Johnson, H.,
Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 140–154. Springer, Heidelberg
(2007)

14. Puerta, A.R.: The Mecano Project: Enabling User-Task Automation During Interface De-
velopment. In: AAAI 1996: Spring Symposium on Acquisition. Learning and Demonstra-
tion: Automating Tasks For Users, pp. 117–121 (1996)

15. Petshop: Petshop Homepage (Last access: April 2008), http://liihs.irit.fr/
petshop/; Shannon, C., Weaver, M.: The Mathematical Theory of Communication,
University of Illinois (1949)

16. Storey, N.: Safety-Critical Computer Systems. Addison-Wesley, London (1996)
17. Stuart, J., Penn, R.: TaskArchitect: taking the work out of task analysis. In: Proceedings of

the 3rd Annual Conference on Task Models and Diagrams, TAMODIA 2004, Prague,
Czech Republic, November 15 - 16, 2004, vol. 86, pp. 145–154. ACM Press, New York
(2004)

18. Szekely, P., Luo, P., Neches, R.: Facilitating the Exploration of Interface Design Alterna-
tives: The HUMANOID Model of Interface Design. In: CHI 1992 Conference Proc. (1992)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 110–117, 2008.
© IFIP International Federation for Information Processing 2008

UI Design without a Task Modeling Language – Using
BPMN and Diamodl for Task Modeling and Dialog

Design

Hallvard Trætteberg

Associate Professor
Dept. of Computer and Information Sciences

Norwegian University of Science and Technology
hal@idi.ntnu.no

Abstract. In the field of model-based user interface design (MB-UID) task
modeling is established as a necessary activity. However, in many (industrial)
contexts, it is not realistic to introduce yet another modeling notation, particu-
larly when user interface design is considered less important than overall proc-
ess logic and system architecture. Therefore, it may make more sense to adapt
existing process-oriented notations to task modeling, than vice versa (adapting
task modeling languages to process modeling). This paper describes our experi-
ences with using BPMN and Diamodl for process and task modeling and dialog
design, respectively.

Keywords: User interface design, dialog modeling, business process manage-
ment notation.

1 Introduction

Within the field of model-based user interface design (MB-UID), the standard design
process includes task modeling, dialog modeling and concrete design 2. . Specialized
modeling task and dialog modeling languages/notations have been developed for
supporting the first two of these, while the latter involves mapping from dialog to
either a concrete model or specific toolkit or runtime platform. Specialized languages
are important, for at least two reasons: 1) they put focus on the specific information
that an activity should result in, and 2) they enable better tool support by formalizing
the relevant information. There is however a cost associated with introducing new
notations in software development, as it adds to the already high complexity of mod-
ern development methods and tools.

An alternative approach is taking established (within the target industry) modeling
languages as a starting point and augmenting the methods built around them, so the
desired information still is captured, although in a different form. The advantage lies
in lowering the cost of adopting the methods (hopefully below the threshold of adop-
tion). In addition, we see a potential for coupling information in different models, i.e.
there may be a synergy between the main usage of the notation and the new, aug-
mented usage. In our work we have looked at how the Business Process Modeling
Notation (BPMN) may be extended to cover tasks and augmented with extra

 UI Design without a Task Modeling Language – Using BPMN and Diamodl 111

information concerning object life-cycle. The basic idea is that business processes and
tasks are similar concepts at different levels of abstraction, and that the essential in-
formation from task analysis may captured by using BPMN in a different way, aug-
mented with some extra information. As a bonus, the relation between the high-level
processes and lower-level task structures becomes clearer and the gap between system
logic and architectural and dialog structure and behavior, becomes smaller.

In the following sections we will review related work, describe the overall ap-
proach and outline a practical method for modeling and deployment of applications
using BPMN 8. , Diamodl 10. and Eclipse-based tools.

2 Related Work

In 6. several task and process modeling languages are compared, to see how they may
support model-based design of eServices in eGovernment applications. We have previ-
ously discussed the relation between process modeling and task modeling in 3. and
more recently in 4. . Our focus on this paper is on a lean method based on a the standard
process modeling language BPMN and Diamodl and deployment using standard, open-
source tools and modern architecture. 7. also take a business process model (BPM) as a
starting point, but uses a less formal UI model with a weaker coupling to the BPM. The
goal of 5. is similar to ours, that of supporting server-side workflow with model-based
UI client, but they do not use a standard workflow modeling notation.

3 Overall Approach

In the prototypical MB-UID process, a task model is the starting point for developing
a dialog model and subsequent concrete user interface design. The task model may be
seen as capturing human behavior, the dialog model describes software behavior. The
deployment of the UI will be a combination of concrete user interface elements and
the software and models necessary for implementing the dialog behavior, like state
machinery, data binding, etc. and the concrete interface describes what is actually
deployed.

This is actually fairly similar to the standard approach of business process model-
ing using BPMN and execution and deployment using the Business Process Execution
Language (BPEL) 9. . First, the behavior of the process, or rather the roles and sys-
tems taking part in the process, is described as communicating processes, activities
and tasks in a BPMN diagram. This model is transformed to a BPEL model, which
describes the software part of the (future) process, i.e. the (automation of) coordina-
tion (also called choreography and orchestration) aspects of the process and relies on
web services for linking all the participants (people, processes and external services).
The BPEL model is then deployed, together with other supporting software like busi-
ness objects, web services, persistence etc.

As can be seen, the and overall approach and role of the models is similar, al-
though they have the (group) system perspective instead of the (individual) UI per-
spective. This more than suggests that the models can be related across the domains of
business process management and user interface design, as illustrated in 0. According

112 H. Trætteberg

to this figure, process models (in BPMN) may be related to task models since they
both capture the behavior of people, BPEL models may be related to dialog models,
since they both model software for supporting people and BPEL and a deployed
BPEL model executed by a server-side engine may interact with the client-side UI
runtime. We are currently investigating how this may be more than analogy, i.e. we
propose method whereby BPMN is used for both business process and task modeling
and BPEL and diamodl are used for modeling software support and deployment on a
SOA-based platform.

People behavior Software behavior Deployment

S
ys

te
m

U
I

Process model
(BPMN)

Task model
(BPMN++)

BPEL

Dialog model
(Diamodl)

BPEL engine

UI runtime
(Diamodl runtime)

Fig. 1. Relationship between system and user interface domains

4 Using BPMN for Task Modeling

According to www.bpmn.org “… Business Process Modeling Notation (BPMN) will
provide businesses with the capability of understanding their internal business proce-
dures in a graphical notation…”. Such a business procedure is a set of coordinated
tasks performed by a set of roles and structured in hierarchy (called activity). Tasks in
different processes communicate and implicitly coordinate by means of message con-
nections. Tasks in the same process use flow connections for controlling sequencing
and variables for storing XML data as process state. A task may repeat and be condi-
tional. Web services are used for communicating with external systems, including
business objects and UI clients.

A task modeling language typically structures tasks in a hierarchy. Operators are
used for controlling the enablement and sequencing of tasks, e.g. tasks may be per-
formed in sequence, in parallel, one of several tasks may be conditionally selected, a
task (structure) may repeat, etc. Events from the environment, including objects rep-
resenting the domain, may trigger or enable tasks, and operations may be performed
on the environment.

The main difference between BPMN and task modeling languages is more a matter of
style than expressive power and both essentially model a task hierarchy. Similarly, the
control flow connections of BPMN and operators in task modeling languages are visually
different, but have essentially the same expressive power. Finally, messages may take the
role of events, to model tasks that are triggered by changes in the environment.

The weakest point of BPMN is domain modeling and data. Due to its focus on
process message exchange and integration of web services, XML schemas and XML

 UI Design without a Task Modeling Language – Using BPMN and Diamodl 113

data has been chosen as the data model. Fortunately, many tools for object-oriented
modeling, e.g. EMF 1. , can generate XML schemas, serialize models as XML and in
general interoperate with XML, so this is more a practical obstacle than a conceptual
problem. E.g. although a variable cannot be declared to reference an object of a par-
ticular class, is can be declared to refer to an XML fragment that represents an object
of a particular class.

What is still missing is a way of declaring pre-conditions and post-conditions in
terms of objects and their life-cycle (creation and destruction) and state. E.g. a pre-
condition for performing a review of an application is of course the application, and
the post-condition is that the review has been created. Hence, we augment the BMPN
“task” model with annotations on each task that makes these conditions explicit, not
very different from how Use case diagrams are elaborated be means of structured text.

5 Step-by-Step Modeling Method

Fig 1 shows the relationship between system and UI perspectives on the process of
going from a process/task model to a deployed system which combines a BPEL en-
gine and the Diamodl runtime. In this section we detail the practical method we pro-
pose for this process. The process is illustrated by a simple example, that of reviewing
a request (for something) and returning the answer. As shown in fig 2, the Customer
sends in an application that is received by our User role. The User performs a shallow
review and may decide to either let the Expert role perform a deep review or do it
himself. The resulting review is sent back to the Customer.

Fig. 2. Business process

Creating this BPMN model is the first step in our method, combined with domain
modeling, where concepts in the domain are formalized in a class diagram. In prac-
tice, the domain model may already exist, either from previous projects or as a refer-
ence model for a well-established domain, e.g. order management. Since BPMN is
XML-centered, we need to be able to convert the domain model to an XML Schema,
before annotating the connections between processes (and possibly internal variables)

114 H. Trætteberg

with XML types. We use Ecore, the Eclipse Modeling Framework’s modeling lan-
guage for domain modeling, and export the XML Schema from the Ecore editor. The
Intalio Designer Eclipse application, which we use for BPMN modeling, allows us to
open the XML Schema in the Process navigator and drag XML types into the connec-
tions in the diagram.

This model is system centric, in that it does not focus on any particular user or dis-
tinguish between the user and the system. The next step in the method is disentangling
the users’ task from the system, as a kind of process refactoring. The general idea is
to model the User role in a process of its own and make the connection (interface) to
other roles and processes explicit. The refactored process model is shown in fig 3. As
can be seen, this process interacts with both the Executable process, i.e. the system,
and the Expert role.

This refactored process model is similar to a task model, in that it makes explicit
what each uses does (task structure) and how it interacts with its environment (events
and data). It may require further decomposition to be detailed enough, and in addition
we annotate it with pre- and post-conditions that make explicit how domain data is
operated on (life-cycle and states). E.g. the pre-condition for the User task “shallow
review” is that there exist an unhandled request and the post-condition is that a review
has been created and is in progress. This step may result in a refined domain model, to
better capture the objects’ possible states.

The connections flowing into and out of the User process, defines the necessary in-
put and output of the user interface, and hence the dialog model, which is the next
step. Our dialog modeling language Diamodl fits well with the dataflow nature of
process models and web services. The connections are modeled as computations in
Diamodl, the in-flowing connections become computations without input (sources of
data), while out-flowing connections become computations with one input and no
output (sinks of data).

Fig. 3. Refactored process

 UI Design without a Task Modeling Language – Using BPMN and Diamodl 115

Although the BPMN diagram is a model of how the user works, it is not a model of
how the user works with the to-be-designed UI. In our experience, one of the main
decisions to be made is how the user manages multiple and possibly parallel instances
of the process. This possibility is implicit in the process model and if not considered
in the design process, we may end up with a user interface that forces the user to work
with each process instance independently. E.g. in this case, we should consider if the
user should be able to see the finished review of one request while performing the
shallow review of another, and perhaps support copying the former review.

Part of the dialog model and corresponding GUI prototype is shown in fig 4. The
two large, shaded triangles are computations that represent connections from the
process model, receiving a request and sending a review to the expert, respectively.
This models lets the user see the list of unhandled requests, select and view one and
choose to review the selected one. There is also a list of reviews in-progress, from
which the user may select one and send to the expert. The GUI prototype has mostly
been generated from the model, with only the layout and labels added by hand. The
sample data that populates the GUI has been created with standard EMF tools, based
on and validated against the domain model.

Fig. 4. Dialog model fragment and GUI prototype

116 H. Trætteberg

The last step is deployment, which in general will include the part of the BPMN
process marked as executable, the GUI and dialog and supporting services like task
and data management. As work in-progress, this is the weak part of the current tool
chain. A valid (and executable) BPMN process fragment may be translated to BPEL
code and deploying it on one of several open source BPEL engines, and Intalio De-
signer is able to generate and deploy to a standards-compliant server in a few clicks.

The GUI and dialog model is executable, but the Diamodl runtime currently lacks
general support for web services, so the final link between GUI and the BPEL engine
is missing. We have, however, validated that we can initiate tasks from the Diamodl
runtime and receive data from the BPEL engine, using the existing support for
Javascript and XML. Similarly, although EMF-based data hasn’t been integrated into
the BPEL engine, EMF supports serializing and de-serializing Ecore instances as
XML, so in principle any BPEL engine can store and communicate EMF-based data
to and from the Diamodl runtime and web services.

6 Conclusion and Further Work

We have presented an approach for modeling business applications using BPMN and
Diamodl, where BPMN is used for both process and task modeling and Diamodl for
the UI structure and behavior. We have shown how these two modeling methods fit
together and outlined a practical method for modeling and deployment, based on
standard components and architecture. Although some technical components have not
been implemented, we have validated the feasibility of both the method and technol-
ogy. Part of the method is currently being taught in an advanced course on model-
driven development of IS at our department.

The goal is to complete the missing parts, by improving the connection between
the three main elements of our approach, domain, process and dialog modeling using
EMF, BPMN and diamodl. More specifically, we need to 1) add support for modeling
web services in the domain model using EMF, to enable deployment of domain-
specific web services, 2) add two-way support for invoking web services in the dia-
modl runtime and 3) improve handling of EMF-based data in a BPEL engine.

References

1. The Eclipse Modeling Framework home page, http://www.eclipse.org/
modeling/emf/

2. Paternò, F.: Model-based Design and Evaluation of Interactive Applications. Series of Ap-
plied Computing. Springer, London (2000)

3. Trætteberg, H.: Workflow and task modelling. In: Proceedings of the Fourth International
Conference on Computer-Aided Design of User Interfaces CADUI 1999, Louvain-la-
Neuve, Belgium, October 21-23 (1999)

4. Kristiansen, R., Trætteberg, H.: Model-based user interface design in the context of work-
flow models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849. Springer, Heidelberg (2007)

5. Bruno, A., Paternò, F., Santoro, C.: Supporting interactive workflow systems through
graphical web interfaces and interactive simulators. In: Proceedings of Tamodia 2005,
Gdansk, Poland. ACM International Conference Proceeding Series, vol. 127 (2005)

 UI Design without a Task Modeling Language – Using BPMN and Diamodl 117

6. Pontico, F., Farenc, C., Winckler, M.: Model-based support for specifying eService eGov-
ernment Applications. In: 5th International Workshop on TAsk MOdels and DIAgrams,
Hasselt, Belgium, October 23-24 (2006)

7. Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S., Stolze, M.: User-Centered Design
and Business Process Modeling: Cross Road in Rapid Prototyping Tools. In: Baranauskas,
C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662.
Springer, Heidelberg (2007)

8. Object Management Group. Business process modeling notation specification, final
adopted specification dtc/06-02-01 (2006)

9. Havey, M.: Essential Business Process modeling. O’Reilly, Sebastopol (2005)
10. Trætteberg, H.: Dialog modelling with interactors and UML Statecharts - a hybrid ap-

proach. Design, Specification and Verification of Interactive Systems. Funcall, Madeira
(June 2003)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 118–125, 2008.
© IFIP International Federation for Information Processing 2008

Task-Based Development Methodology for
Collaborative Environments

Maik Wurdel1,*, Daniel Sinnig2, and Peter Forbrig1

1 University of Rostock, Department of Computer Science, Rostock, Germany
{maik.wurdel,peter.forbrig}@uni-rostock.de

2 Concordia University, Faculty of Engineering and Computer Science, Montreal, Canada
d_sinnig@encs.concordia.ca

Abstract. The paper presents a task-based development methodology for col-
laborative applications. According to our methodology a collaborative task
model may be used during analysis, requirements and design. In order to ensure
that analysis information is correctly translated into subsequent development
phases a refinement relation is proposed supporting the incremental develop-
ment of task specifications. The development methodology is exemplified by a
case study in which interactive support for a conference session is developed.

Keywords: Collaborative Task Models, Development Methodology, Refine-
ment, Tool Support.

1 Introduction and Background Information

In modern software engineering, the development lifecycle is divided into a series of
iterations. With each iteration a set of disciplines and associated activities are per-
formed while the resulting artifacts are incrementally perfected and refined. The
development of cooperative applications is no exception to this rule. Analysis level
models are further refined into requirements- and/or design level models, finally re-
sulting in a complete specification of the envisioned collaborative application.

In this paper we define a development methodology for collaborative systems
covering the phases from analysis to design. Such an integrated development method-
ology will serve as a blueprint for practitioners to derive an iterative development
process according to which collaborative task models are stepwise refined. For this
purpose we analyze the various roles that collaborative task models may play in soft-
ware development. Moreover, we define a refinement relation for collaborative task
models. The practical applicability of our development methodology is demonstrated
by a case study in which we develop interactive support for a conference session.

Within the domain of human-computer interaction collaborative task models are
widely used for the specification of collaborative (multi-user) interactive systems.
Among the most popular ones is Collaborative ConcurTaskTrees (CCTT) [1]. In

* Supported by a grant of the German National Research Foundation (DFG), Graduate School

1424, Multimodal Smart Appliance Ensembles for Mobile Applications (MuSAMA).

 Task-Based Development Methodology for Collaborative Environments 119

CCTT modeling starts with the creation of a task model for each involved role in the
cooperation. Additionally, a so called "coordinator model" is developed to specify the
temporal dependencies of tasks involved in the cooperation. CCTT is suitable for
situations where only one actor is fulfilling one role simultaneously. Often, however,
this is a too rigid constraint. In order to overcome this shortcoming, we have devel-
oped the collaborative task modeling language (CTML) [2]. It is based on the idea
that the behavior of an actor can be approximated through her role. CTML incorpo-
rates concepts for the specification of interrelation between different actors based on
roles, where the behavior of a role is defined by collaborative task expressions. Col-
laborations of actors are specified by means of an OCL-like notation used to specify
preconditions based on the state of the tasks of the involved actors.

The remainder of the paper is structured as follows: in Section 2 we review key
principles of CTML, which will serve as foundation for the presented approach. Addi-
tionally a refinement relation, based on meta-operators for CTML specifications is
proposed. Section 3, the core part of this paper, presents a methodology for the incre-
mental and iterative development of CTML models which is guided by a refinement
relation for CTML specifications. In Section 4 we exemplify our methodology by
elaborating a small case study. Finally we conclude and give an outlook to future
research avenues.

2 The Collaborative Task Modeling Language

Similar to [1], CTML is based on a role-based approach for modeling cooperative
task models. Formally, a CTML model is a tuple consisting of a set of actors, a set of
roles and a set of collaborative task expressions (one for each role) where each actor
belongs to one or more role(s). Each collaborative task expression has the form of a
task tree, where nodes are either tasks or temporal operators. Each task is attributed
with an effect and a precondition. An effect denotes a state change of the system or
environment as a result of task execution. A precondition adds an additional execu-
tion constraint to a task. In particular a task may be performed only if its precondition
is satisfied. Conditions can be either defined over the system state or the state of other
tasks (a task life cycle is defined in terms of a state chart [2]), which potentially may
be part of another task definition. Both, preconditions and effects are needed to model
collaboration and synchronization across collaborative task expressions. The devel-
opment and simulation of CTML specifications is supported by the tool CTML Editor
and Simulator, first introduced in [2].

2.1 Refinement of CTML Specifications

Refinement is a formal process which transforms one specification into another such
that required properties of the original specification are preserved [3]. In support of an
iterative development methodology we propose, in this section, a refinement relation
for CTML models. In [4] we presented a formal approach to define and check refine-
ment between (non-collaborative) task model specifications. In what follows, we
extend the approach to CTML specifications in a straightforward manner. Refining
collaborative task models can be achieved using two different instruments: Structural
and behavioral refinement.

120 M. Wurdel, D. Sinnig, and P. Forbrig

Structural Refinement. The refined CTML model may contain more detailed infor-
mation than its base model. This is achieved by further refining the atomic units (i.e.
the leaf tasks) of the superordinate model. It is, however, important to retain type
consistency. Refined tasks need to revise their task type if necessary according to the
added subordinate tasks. An exception to this rule are tasks that have been marked
with the deep binding meta-operator (will be explained in the context of behavioral
refinement). These tasks cannot change their task type and the respective subtasks
need to be chosen such that type consistency is ensured.

Behavioral Refinement. Whether a behavioral refinement is valid or not depends on
the usage of meta-operators in the respective CTML models. Unlike temporal opera-
tors, meta-operators do not determine the execution order of tasks, but define which
tasks must be retained or may be omitted in the refining CTML model. We distinguish
between three different meta-operators: shallow binding (), deep binding (), and
exempted binding (). All three operators denote tasks which need to be preserved in
all subsequent refining CTML models. While in the case of shallow binding subtasks
may be omitted during refinement, in the case of deep binding all subtasks need to be
preserved. Tasks attributed with the exempt binding operator have been newly intro-
duced during design and should be preserved in all subsequent refinements.

Details of the algorithm implemented to check refinement can be found in [4].

3 Development Methodology

Current software engineering processes advocate iterative development lifecycles
during which artifacts are incrementally perfected and refined [5]. The development
of collaborative task models is no exception to this rule. We believe a CTML model is
best developed in five steps:

1. Definition of roles and corresponding collaborative task expressions
2. Animation and validation of these sub-specifications
3. Specification of the environment including actors, associated roles and devices
4. Annotation of tasks with precondition and effects
5. Animation and validation of the entire specification

Instead of creating the entire model at once, which can be quite overwhelming, we
suggest to first define (1) and test (2) the involved roles and their individual collabo-
rative task expressions. Both steps can be performed iteratively. In case of an
unsatisfying animation the developer typically adapts the underlying specification and
restarts the simulation. Next (3) the designer defines the environment and involved
actors. Additionally (4) task specifications are completed by adding preconditions and
effects based on the analysis of the dependencies between actors and roles. Finally (5)
the entire specification consisting of several “concurrently” executing task expres-
sions can be tested and animated. This sequence is to be repeated until the simulation
exhibits the expected behavior. Please note that in each stage it is possible to return to
any previous step to revise made design decisions, based on evaluation results. Each
of the above steps is fully supported by our tool CTML Editor and Simulator.

Fig. 1 indicates that throughout the development lifecycle of a collaborative appli-
cation different “versions” of a CTML model are used. As will be detailed next, the

 Task-Based Development Methodology for Collaborative Environments 121

usage and role of the CTML model vary, depending on the development stage within
which it is utilized.

Analysis. The purpose of analysis is to understand the user’s behaviors, their collabo-
rations and interactions. Consequently, the analysis CTML model captures the current
work situation and highlights elementary domain processes as well as exposes bottle-
necks and weaknesses of the problem domain. As portrayed in Fig. 1, the focus is on
the actual users while the envisioned interactive system is not yet taken into account.

Fig. 1. CTML in the Development Lifecycle

Requirements. When moving to the requirement stage the analysis information is
further refined by taking into account the support of the envisioned interactive appli-
cation. Correspondingly requirements level CTML models specify the envisioned
way tasks are performed using the system under development. That is, tasks that were
formerly performed by the user may now be taken over by the envisioned interactive
system. Generally, the artifacts gathered during requirements specification are part of
the contract between stakeholders about the future application.

Design. During design, the various tasks of the requirements model are “instantiated”
to a particular target device by taking into account its interaction capabilities. Typi-
cally, new design specific, tasks are also introduced. An example of such a design
specific task for a conference session management system (will be introduced in
Section 4) is “Register Presenter”. This task was not part of the analysis or require-
ments model, but is needed during design such that the session management system is
able to keep track of the participating presenters.

When moving from analysis to requirements to design, the collaborative task
model is further refined since application and design specific information is added.
With each refinement step it is important to verify that the refining model is a valid
refinement of its base specification. The interpretation of what constitutes a valid
refinement depends on the artifacts involved, as well as on their purpose in the soft-
ware lifecycle.

4 Case Study

In this section we showcase the application of the presented development methodol-
ogy by elaborating a small case study which has as its goal the development of
interactive tool support for a conference session. For this purpose let us consider the
following scenario:

Before starting the session Peter, the chairman, connects his notebook to the pro-
jector installed in the conference room and switches to presentation mode. Afterwards

122 M. Wurdel, D. Sinnig, and P. Forbrig

he starts the session by introducing himself and giving a short introduction about the
presentations to be given during the session. Then, Peter gives the floor to the first
speakers, Daniel and Maik, who give a joined presentation. Daniel connects his note-
book to the projector and starts the presentation by briefly introducing the general
approach. The technical details are explained by Maik. His slides are stored on his
own notebook, which has to be connected to the projector before he presents his
ideas. Afterwards, Daniel resumes the talk by giving the conclusion and an outlook
for future research which results in an additional reconfiguration of the notebook and
the projector. After finishing the talk the chairman asks for questions from the plenum
which are answered by the speakers. The subsequent talks are given in ordinary man-
ner until Peter closes the session.

Based on our experiences such a scenario is quite common. The technical burden
of state of the art computing devices leads to a tedious and error prone configuration
process. But pure automation does not solve this problem. From our point of view a
thorough analysis of the collaboration of the actors involved in this process is able to
expose where automation is really helpful. The question to be addressed is: “What is
the appropriate assistance in the current situation for the actual actor?”

Clearly the scenario shows that actors involved in a joint presentation have to syn-
chronize and agree on who is taking the control of the presentation. Daniel and Maik
must not perform the task “Present” concurrently. This is a key collaboration con-
straint and hence should be taken into account in any corresponding collaborative task
model. In Fig. 2 the analysis level CTML model for the joint presentation is given. It
is role-based and represents how involved presenters perform their joint presentation.
As already hinted by the afore-mentioned scenario, a presenter has to gain control and
set up the equipment before presenting his slides. After finishing her/his part the pre-
senter surrenders the control and hence enables other actors to present their parts.

Fig. 2. Analysis Task Model for the Role “Presenter”

The interplay between gaining and surrendering control is modeled using the ef-
fects given in Table 1. The effect of an actor performing the task “Gain Control” is
that for all other presenters the “Gain Control” task becomes disabled. Conversely,
the execution of the task “Surrender Control” enables the “Gain Control” task to all
participating presenters among which, one presenter will be able to “Gain Control” of
the presentation.

 Task-Based Development Methodology for Collaborative Environments 123

Table 1. Effects of Analysis Task Model for “Presenter”

Task Effect
(1.) Gain Control Presenter.allInstances.Gain Control.disable
(2.) Surrender Control Presenter.allInstances.Gain Control.enable

Before moving to the requirements stage, we have to ensure that pivotal domain

specific tasks are preserved in all subsequent refining models. This is done by the use
of meta-operators which have been introduced in the previous section. In the context
of this case study, the important tasks to be retained are “Gain Control”, “Present”
and “Surrender Control” and therefore are marked with the shallow binding operator.

During the requirement stage new aspects come into play. Compared to the analy-
sis model, the envisioned work situation is enriched by taking into account the sup-
port of interactive devices. In our case the interactive support consists of a remote
presenter device and a steerable projector. The former can be used to navigate through
the slides but also to surrender and gain control of the presentation. The latter can
soft-switch between multiple input sources and projection surfaces and hence, can
relieve the presenters from manually setting up the equipment (e.g. connecting the
laptop to the projector).

As depicted in Fig. 3 the requirements level task model refines the analysis model in
terms of structure and behavior. The task “Gain Control” has been structurally refined
into interaction and application subtasks denoting how the control of the presentation is
gained using the envisioned software system. In particular the execution of the subtask
“Assign Control” assigns the control of the remote presenter device and thus to its user.
The “Present” task is now regarded as an interaction task since presentations given
with the new system are requiring the interaction with the newly introduced remote
presenter device. The execution of the “Setup Equipment” task has the effect that the
input source of the steerable projector is set to the current actor’s laptop. Note that for
the sake of simplicity the necessary preconditions and effects are not shown.

In order to ensure that the requirements are preserved in subsequent design models
the tasks “Gain Control” and “Present” are marked with the deep binding meta-
operator. This guarantees that each of these tasks including the subtasks is carried on
to the design stage. Additionally “Surrender Control” keeps being marked with the
shallow binding operator.

Fig. 3. Requirement Task Model for the Role “Presenter”

124 M. Wurdel, D. Sinnig, and P. Forbrig

During design, the focus is put on tasks related to the specific interaction with the
newly introduced system. Fig. 4 portrays the corresponding task model for our case
study. In particular the task “Request Control” has been further refined with subtasks
which take into account concrete interactions with the remote presenter (e.g. “Press
Request Button”). The same applies for “Surrender Control”. Additionally, technol-
ogy related tasks are introduced. In the context of the case study the presenter has to
register her/his remote presenter device to the system (“Register Presenter”) before it
can be used. The “Register Presenter” task has been attributed with the exempted
binding operator, denoting that it should be preserved in all subsequent refinements.

Fig. 4. Design Task Model for the Role “Presenter”

We conclude this section by noting that for each phase (i.e. analysis, requirements
and design) we interactively animated the developed CTML models using the tool
CTML Editor and Simulator. This was particularly helpful in gradually refining the
model until the envisioned behavior was achieved. A snapshot of the interactive ani-
mation of the requirements level task model is depicted on the right hand side of
Fig. 5. On the left hand side a snapshot of the tool in specification mode is given.

Fig. 5. CTML Editor and Simulator in Specification and Animation Mode

 Task-Based Development Methodology for Collaborative Environments 125

5 Conclusion and Future Work

In this paper we presented a development methodology for collaborative task models.
In particular, we proposed a set of steps for the incremental development of CTML
models. Each step is supported by our tool the CTML Editor and Simulator. We ex-
plored the different roles of a CTML model within the development lifecycle of a
collaborative application. In particular we proposed a development methodology
according to which an analysis level CTML model is further refined to a requirements
and design level model. Finally we validated and illustrated our proposed develop-
ment methodology by elaborating a small case study, which had as its goal the devel-
opment of interactive support for a conference session.

As future work we are currently investigating how CTML can be integrated into
state of the art model-based UI development processes for collaborative environ-
ments. Another future avenue deals with the enhancement of the CTML Editor and
Simulator with model checking capabilities such that the tool will be able to prove
certain properties of a CTML model (e.g. livelock and deadlock freedom) and mecha-
nizes the verification of refinement between CTML specifications.

References

1. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. IEEE Trans. Softw. Eng. 28(8), 797–813 (2002)

2. Wurdel, M., Sinnig, D., Forbrig, P.: Towards a Formal Task-based Specification Frame-
work for Collaborative Environments. In: CADUI 2008, Albacete, Spain (2008)

3. Bowen, J., Reeves, S.: Refinement for User Interface Designs. In: FMIS 2007, Lancaster,
UK (2007)

4. Wurdel, M., Sinnig, D., Forbrig, P.: Task Model Refinement with Meta Operators. In: DSV-
IS 2007, Kingston, Canada (2008)

5. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 3rd edn. Prentice Hall PTR (2004)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 126–133, 2008.
© IFIP International Federation for Information Processing 2008

An Event-Condition-Action Approach for Contextual
Interaction in Virtual Environments

Lode Vanacken, Joan De Boeck, Chris Raymaekers, and Karin Coninx

Hasselt University - tUL - IBBT, Expertise Centre for Digital Media (EDM),
Wetenschapspark 2, B-3590 Diepenbeek, Belgium

{lode.vanacken,joan.deboeck,chris.raymaekers,
karin.coninx}@uhasselt.be

Abstract. In order to support context-dependency in model-based development,
three components need to be realised: Context Detection, Context Switching
and Context Handling. Context detection is the process for detecting changes in
context, while context switching brings the system in the new state that needs to
be supported. Finally, context handling adapts the interaction possibilities to the
current context. In this paper we discuss an approach for context detection and
switching for virtual environments that is based on the Event-Condition-Action
paradigm. Both context detection and switching are split-up and supported by
our graphical notation for the design of multimodal interaction techniques. The
main advantage of this approach is that we provide the designer with a flexible
context system, supported by scalable diagrams.

Keywords: Multimodal Interaction Techniques, Model-Based User Interface
Design, Context-Awareness.

1 Introduction and Related Work

The development of interactive computer applications takes much time, especially for
the design and implementation of the user interface. This is in particular true for 3D
multimodal interfaces for Virtual Environments (VEs). The process of creating or
selecting interaction techniques for such interfaces is not straightforward. A large
amount of possibilities exist with regard to input and output devices and the combina-
tion of these with respect to the interaction techniques being designed. One possible
approach that can be applied in order to simplify the development process is using
model-based user interface design as described in [4, 10].

In model-based user interface design (MBUID) different models are used through
gradual progression. Typically, such a process starts at the level of a task model,
moves over several other models, such as the dialog model up to the final user inter-
face. Models can be transformed from one model into another or can be combined.
Specifically for the design of a VE, it is necessary to model the multimodal interac-
tion techniques, such as ‘object manipulation’. Several high level notations exist,
which can be used for this purpose [5, 7, 10]. In our research we use NiMMiT (Nota-
tion for Multimodal Interaction Techniques) [5] for describing the interaction.

 An ECA Approach for Contextual Interaction in VEs 127

The use of context information in a MBUID process when developing mobile or
hand-held interfaces, already has been studied thoroughly [2, 8]. Indeed, a mobile
application can have different locations, platforms or services which allow other fea-
tures or actions to be available, resulting in interfaces that must adapt to each context.
The same can be true in a VE application where the context is often defined by the
available devices (and input/output modalities), external parameters such as the
experience level of the user, or whether the user is seated or standing. All those pa-
rameters may have their influence on the interaction with the system.

Without special facilities for context in the diagrams, these features have to be
supported in an ad-hoc manner. Clerckx [3] distinguishes several levels at which
context may have its influence. A context system can be represented at the task or the
dialog level, but in this work we focus on the dialog level. Such a context system
consists of three components. Firstly, changes in context need to be sensed through a
context detection system. Next, the system needs to react upon this change. The con-
text switching makes sure that only parts of the system that react on the new context
are active, while interaction techniques can act upon the current context through the
context handling system.

We will first briefly discuss our approach to handle contextual knowledge at the
dialog level as earlier proposed in [9]. In section 3 we elaborate on how this approach
can be improved to dynamically support context switches using the Event-Condition-
Action (ECA) [1, 6] paradigm. Using this paradigm we achieve a scalable approach
which can be supported by (semi-)automatic generation. As we will be using NiM-
MiT as a high level notation for interaction techniques, we can reuse the existing run
time system, and as we can assume that designers may already know this notation
from the design of their user interaction, they do not need to learn a new notation to
model context information.

2 Runtime Context

In earlier work [9], we introduced handling context knowledge using NiMMiT. The
graphical notation NiMMiT, inherits the formalism of a state-chart in order to de-
scribe the (multimodal) interaction within the virtual environment. Furthermore, it
also supports data flow which occurs during the interaction, as well. A more detailed
description of NiMMiT can be found in [5].

Our approach to integrate contextual information was inspired from earlier results
of research in the area of model-based design [3]: (1) incorporating context in task
and dialog modelling and (2) adding modality constraints to tasks. We discuss a com-
bination of these two approaches, enabling context-aware selection of modalities.

Consider for instance a VE application that has two setups (external contexts),
which differ in devices/modalities to be used. An application, that can be used in
either an immersive setup using stereo vision and gloves or in a desktop setup with a
keyboard and a mouse, illustrates this idea.

128 L. Vanacken et al.

(a) (b)

Fig. 1. (a) Combining modality constraints with the decision task notation (task model and
dialog model). (b) Merged dialog models.

One way to incorporate this, is to introduce the contexts at the task level [3], this
means that according to the contextual constraint (m1 and m2), a different task is se-
lected, as is illustrated in figure 1(a). Task t2 is divided into two distinct tasks t2a and
t2b. This approach expands into two different dialog models, one for each context.
Both models contain two states, containing one task each, in this example. According
to the context m1 or m2, the appropriate dialog model is selected.

This solution is suitable when a context switch enables other tasks or requires other
interaction techniques and thus affects the task model. The drawback is the duplica-
tion of the dialog model for each context. Alternatively, in a typical VE situation as in
our example, the tasks may remain the same for each context. In this situation defin-
ing ‘context’ at the dialog level is considered as a more efficient approach.

Moreover, to overcome the problem of duplication both approaches may be com-
bined: instead of having two distinct dialog models, we simply merge them together
and make a distinction only where a difference is made by a context status. This is
illustrated in figure 1(b). The two states containing t1 are merged into one state in one
and the same dialog model, but a choice is made to the appropriate state transition
depending on the context. In this way the decision at the task level is modelled at the
dialog level.

In our former work [9], we implemented this approach at the dialog level using our
interaction description model: NiMMiT. In figure 2 an example of our approach is
depicted. In figure 2(a) we can see that in the ‘Start’-state several different events
(modalities) could trigger the execution of the task chains. Using ‘context’ informa-
tion, we are able to attach a certain context to a certain event or modality, such that,
depending on this context, only those events belonging to that context are active. If
for example ‘GLOVE.MOVE’ is intended to be used in the immersive setup, one can
attach the ‘immersive’-context to the event-arrow ‘GLOVE.MOVE’. Similarly the
event ‘KEYBOARD.MOVE’ can be used in the ‘desktop’-context. Note that if there
was no support to couple events to a context the same diagram should be created
twice with different events (as in figure 2(a)) which would make maintenance much
harder.

Adding this contextual knowledge to events transforms the view of the diagram
depending onto which context of the diagram we are viewing. A part of the resulting
diagram containing context arrows is shown in figure 2(b).

 An ECA Approach for Contextual Interaction in VEs 129

(a) Events active in two different contexts

(b) Events were attached to context arrows

Fig. 2. Our approach to contextual knowledge at the dialog level

3 Defining a Context System

3.1 Context Detection and Switching

Our previous work concentrated on context handling. The detection and switching
was handled through explicit user interaction. In order to realise a context-dependent
interaction, it is also necessary to automate this detection and handling of the context.
The following section therefore discusses how this has been integrated into our
existing system.

The process of context detection and switching can be seen as an Event-Condition-
Action process. A certain event or combination of events can signal a change in con-
text, possibly depending on certain conditions. Finally if the conditions are met, it
might be necessary to perform an action such that the context switch is finalised. For
instance, a user may stand up from his chair (event). Before executing a context

130 L. Vanacken et al.

switch, we must ensure that he wears tracked gloves (condition). If the condition is
met, we disable the toolbars that are needed in the desktop setup and connect the
cursor to make the glove visible (action). Note that we assume that ‘standing up’ can
be recognised as an event. If this would not be possible, it is also possible to listen to
a more general event, e.g. the movement of a tracker mounted to the user’s head
event, and assert for the tracker’s position in order to decide whether the user is seated
or standing (condition).

In order to keep the design as modular as possible, this Event-Condition-Action
process is split up in two parts. One part is the context detection, the other handles the
context switch. According to Event-Condition-Action, the context detection should
identify what events to listen for, checks whether or not the conditions are fulfilled
and it eventually triggers a ‘context switch’ event. This event is recognised by the
Context Switching part.

The Context Switching part captures the ‘context switch’ event and executes the
actions that are necessary before switching to the target context.

Dividing the process in two distinct parts, connected through the ‘context switch’
event, has the advantage that the code necessary for checking the conditions is sepa-
rated from the action code. In the next section we will explain why this will lead to
smaller and well-organised diagrams.

3.2 Implementation through NiMMiT Diagrams

In our research, interaction techniques are defined using NiMMiT diagrams. As
NiMMiT offers a convenient way to describe systems in which events fire a set of
tasks, we propose that both the context detection and switch can be implemented
using NiMMiT diagrams, as well. Besides this reason, designers already know NiM-
MiT from the design of the interaction itself, which allows them to model context
without having to learn a new modelling notation. Finally, the run time system to
execute NiMMiT diagrams is already realised.

The Context Detection NiMMiT diagram defines a state for each ‘context’ where
the relevant events that can evoke a context switch are available. The events activate a
task chain, which checks the condition by a more complex set of tasks. When the con-
dition is not met, nothing happens. Otherwise, before moving on to a new state, reflect-
ing the new context, the task chain has to fire a ‘context switch’ event. A template of
such a diagram can be seen in figure 3. Two contexts, SITTING and STANDING are
represented using the two states ‘Context-SITTING’ and ‘Context-STANDING’.

A second NiMMiT diagram, responsible for the action, contains a state for each
context. In each state, the respective ‘context events’ are awaited. Upon occurrence of
such an event a task chain is fired, containing the code that has to be executed before
the context switch. This code might be enabling or disabling certain devices, showing
or hiding objects or controls in the world, etc. The last action in this task chain, before
moving to the new context state, is explicitly setting the context, so that the running
NiMMiT diagrams that define the user interaction can adapt to the context switch, and
handle the new context.

The NiMMiT diagrams defining the context system, will share a similar pattern
among different projects. Independent of the nature or the number of contexts, each

 An ECA Approach for Contextual Interaction in VEs 131

context will be represented as a state in both diagrams. Each context transition will
then be represented by an event arrow in the context detection diagram and a ‘context
event’ arrow in the context switching diagram, invoking a task chain.

The similar patterns of these ‘context’ diagrams open the opportunity for an editor
to generate a template diagram that can be completed by the designer. Obviously, for
specific purposes the designer is free to alter the generated diagrams, e.g. if he wants
to restrict possible context switches.

Fig. 3. Implication of the proposed context system at the task level

3.3 Implications at the Dialog Level and Task Level

The proposed context detection and switching system is a process which is active
during the entire execution of the application. This obviously has its implications on
the task level and dialog level of the model-based process. For the dialog model,
every state contains two new tasks which are performed concurrently with the normal
tasks, these tasks include the context detection and the context switching diagrams.

Considering the task level, this means that a new subtree concurrent with all other
subtrees is part of the task hierarchy, as can be seen in figure 4. The ContextSystem
tasks perform the detection and switching of the context, while the VE tasks may
change their execution based upon this context switch, as discussed in figure 2.

132 L. Vanacken et al.

Fig. 4. Implication of the proposed context system at the task level

4 Discussion

A possible problem related to describing context in a state chart, is the fact that these
diagrams can suffer from a state explosion if the number of different contexts be-
comes too high. This especially is true if we consider a context as an n-dimensional
vector of observed values. If these observed values are orthogonal to each other, this
will result in an exponential explosion of contexts, and hence will make the diagrams
hard to manage, even despite the division in two separate diagrams.

However, in some cases the contexts which are applied in a VE are rather simple,
which means that either the condition or the action is not present. In that case it may
be overkill to design two diagrams: one translating ‘(device) events’ into ‘context
events’, and another responding to those ‘context events’. In this situation, the de-
signer may decide to combine both diagrams and hence either add context switching
code to the context detection diagram, or adding ‘(device) events’ to the context
switching diagram.

5 Conclusion

Context detection and context switching are necessary components of an overall
approach for context-dependency in model-based development. In this paper, we
presented our approach for context detection and switching.

Event-Condition-Action rules are used as a basis for the context system. Both con-
text detection and switching are split up and supported by NiMMiT diagrams, this
results in a scalable approach. The run time system for NiMMiT is already present
and the designer also uses NiMMiT to design interaction techniques, therefore the
usage of NiMMiT eliminates the overload of having to learn a new notation for
context modelling or adding a new module to the run time system. As the general
pattern of the context detection and switching diagrams is similar among different
projects, the approach also opens the opportunity for a (semi-)automatic generation of
the diagrams by an editor. In the future, we would like to further investigate how our
approach compares to other approaches and validate it using case studies.

 An ECA Approach for Contextual Interaction in VEs 133

Acknowledgments. Part of the research at EDM is funded by the ERDF (European
Regional Development Fund) and the Flemish government. The VR-DeMo project
(IWT 030248) is directly funded by the IWT, a Flemish subsidy organisation.

References

1. Beer, W., Christian, V., Ferscha, A., Mehrmann, L.: Modeling Context-aware Behavior by
Interpreted ECA Rules. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par
2003. LNCS, vol. 2790, pp. 1064–1073. Springer, Heidelberg (2003)

2. Capra, L., Emmerich, W., Mascolo, C.: Carisma: Context-aware reflective middleware
system for mobile applications. IEEE Trans. Software Eng. 29(10), 929–945 (2003)

3. Clerckx, T.: Model-based development of context-aware interactive applications in ambi-
ent intelligence environments. Ph.D. thesis, transnationale Universiteit Limburg (2007)

4. De Boeck, J., Gonzalez Calleros, J.M., Coninx, K., Vanderdonckt, J.: Open issues for the
development of 3d multimodal applications from an MDE perspective. In: MDDAUI
(2006)

5. De Boeck, J., Vanacken, D., Raymaekers, C., Coninx, K.: High-level modeling of multi-
modal interaction techniques using nimmit. Journal of Virtual Reality and Broadcasting
4(2) (2007)

6. Etter, R., Costa, P., Broens, T.: A Rule-Based Approach Towards Context-Aware User
Notification Services. In: Proceedings of the IEEE ICPS 2006, pp. 281–284 (2006)

7. Figueroa, P., Green, M., Hoover, H.J.: InTml: A description language for VR applications.
In: Proceedings of Web3D 2002, Arizona, USA, pp. 53–58 (2002)

8. Sohn, T., Dey, A.K.: icap: an informal tool for interactive prototyping of context-aware
applications.In: CHI Extended Abstracts, pp. 974–975 (2003)

9. Vanacken, L., Cuppens, E., Clerckx, T., Coninx, K.: Extending a dialog model with con-
textual knowledge. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007.
LNCS, vol. 4849, pp. 28–41. Springer, Heidelberg (2007)

10. Willans, J., Harrison, M.: A toolset supported approach for designing and testing virtual
environment interaction techniques. International Journal of HCS 55(2), 145–165 (2001)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 134–141, 2008.
© IFIP International Federation for Information Processing 2008

Automated Usability Evaluation during Model-Based
Interactive System Development

Sebastian Feuerstack1, Marco Blumendorf1, Maximilian Kern1, Michael Kruppa2,
Michael Quade1, Mathias Runge1, and Sahin Albayrak1

1 DAI-Labor
Technische Universität Berlin

Ernst-Reuter-Platz 7,10587 Berlin
Firstname.Lastname@DAI-Labor.de

2 Deutsches Forschungszentrum für Kuenstliche Intelligenz GmbH
Trippstadter Str.122, 67663 Kaiserslautern
Firstname.Lastname@dfki.de

Abstract. In this paper we describe an approach to efficiently evaluate the us-
ability of an interactive application that has been realized to support various
platforms and modalities. Therefore we combine our Multi-Access Service Plat-
form (MASP), a model-based runtime environment to offer multimodal user
interfaces with the MeMo workbench which is a tool supporting an automated
usability analysis. Instead of deriving a system model by reverse-engineering or
annotating screenshots for the automated usability analysis, we use the seman-
tics of the runtime models of the MASP. This allows us to reduce the evaluation
effort by automating parts of the testing process for various combinations of
platforms and user groups that should be addressed by the application. Further-
more, by testing the application at runtime, the usability evaluation can also
consider system dynamics and information that are unavailable at design time.

Keywords: model-based user interface development, automated usability
evaluation.

1 Introduction

User interfaces (UI) are more and more required to support several contexts-of-use.
They need to be able to be run on several platforms, consider different types of users
and adapt to various usage situations. This poses new challenges when it comes to the
development of interactive applications as well as their evaluation. In this work we
present our approach combining a model-based runtime system with an Automated
Usability Evaluation (AUE) tool to provide the ability to evaluate UIs that adapt at
runtime. In order to attend to these issues we combined two approaches: The Mental
Models (MeMo) workbench, a workbench for AUE and the Multi-Access Service
Platform (MASP), a model-based framework for UI generation. Model-based UI
development approaches [1, 2, 3, 4] already support the generation of multi-platform
user-interfaces as well as context-of-use adaptation. They contain semantics stored in

 Automated Usability Evaluation 135

a well-structured form of declarative design models. This allows tools to assist devel-
opers at design-time by detecting questionable features and by offering the help of
automated advisors. However, most of these approaches do not consider ad-hoc adap-
tation to the context-of-use which can only be calculated at runtime. The MASP al-
lows the derivation of a UI from a set of executable models [5], defining the user
interface state. Besides having the possibility to describe adaptive UIs, the models and
the state information can also be utilized to support the AUE of the UI. By working
with abstract UI models, which ideally contain all required concepts, the UIs could be
generated for any platform and thus usability evaluation could be done by considering
any platform without being forced to redefine the concepts of the evaluation target.

After we give an overview of related work in the research field of automated us-
ability evaluation in the next section, we elaborate on the combination of the two
approaches. We illustrate the results of the evaluation using the interactive Cooking
Assistant we developed based on the MASP (the Cooking Assistant has also been
deployed as a demo application in our Ambient Assisted Living Testbed [6]) and we
conclude with a summary and outlook in section 5.

2 Related Work

AUE methods can support the evaluation process, whereas they differ significantly
in their degree of automation and the effort for evaluators [7]. The majority of AUE
methods is usually applied on already existing systems or prototypes and therefore
requires re-constructing a system interaction model by reverse-engineering or manu-
ally annotating the semantics of already existing applications [8, 9, 10]. The Cog-
Tool [11] is a tool to predict execution times for certain tasks. The max model [12] is
considering cognitive aspects via user simulation for measuring accessibility of in-
formation within web sites and the PROSKIN project [13] is tracking user data in
order to aggregate it to higher-level profiles to gain personalized UI designs. The
AIDE [14] tool focuses on organizing the controls of an interface by incorporating
five metrics (efficiency, alignment, horizontal balance, vertical balance and con-
straints) into the design process, while initial automated assistance has been pro-
posed by USAGE [15]. Furthermore, tests have been developed for certain aspects of
completeness, consistency and command-reach ability [16]. Model-based interface
development environments, such as TADEUS’s [17], support simulation and model-
checking by translating the dialog model into a Petri net.

In contrary to these approaches we are moving the AUE from design-time to run-
time in order to enable the evaluation of ad-hoc context-of-use adaptations as well as
considering system dynamics that are unknown at design-time, such as data queries.
We use the MeMo workbench [18] to simulate different user profiles that perform
certain tasks and benefit in the way that usability issues are uncovered for a wide
range of possible users. Further on, we can simulate users performing more errors as
usual to diagnose the system’s behavior which is difficult to predict by real persons
within complex systems. The evaluation process of the MeMo workbench is based on
a cognitive walkthrough (CWT) carried out by a usability expert and includes a rule
engine which contains a set of modifier rules extracted from the CWT methodology.

136 S. Feuerstack et al.

Compared to the related work, our approach offers the following benefits:

• No need for a manual re-creation of the specification of an application which is
fragile for introducing misunderstandings and incompleteness.

• All combinations of platforms and users that are addressed by the interactive
application can be efficiently targeted to an automated user interface evaluation.

• By utilizing the model-based run-time system, the evaluation can consider sys-
tem dynamics and parameters, and context-of-use variations.

3 Model-Based Automated Usability Evaluation

In order to automate the usability evaluation for several context-of-use scenarios, each
specifying a combination of a specific platform, a certain group of users and condi-
tions of the environment, we replaced the system interaction model (SIM) of the
MeMo workbench with the runtime models of the MASP. The simulation starts with
the MASP generating the initial representation of the user interface for a certain con-
text-of-use. This representation is sent to the MeMo workbench by delivering a sys-
tem interaction state (SI state) which consists of the current enabled set of interaction
input and output tasks. Based on this information and the current user profile, the
MeMo workbench chooses an interaction which is related to an input task of the
MASP. The correlated user action will be performed and a new SI state is generated
until the user’s goal has been accomplished.

3.1 System Interaction State Generation

In the MASP we are interpreting task trees that define the temporal relations as the
basic interaction flow for the interactive system. A domain model completes the task
model by providing content for the tasks. The model defines the data structures and
holds instances of these structures which are objects that become accessible at run-
time. The life-time of these objects is determined by the task model, which also refer-
ences the objects in the designated tasks as we described in detail in [19]. Modifying
objects of the domain model happens either through the service model (1), connecting
backend services to application tasks (2) or by user interaction (3) while entering and
changing information. User interaction is mediated by the interaction model, detailing
the interaction tasks (4). Here we distinguish input interaction tasks (IIT) and output
interaction tasks (OIT), which identify the interaction on the highest level of abstrac-
tion. While OITs require no human intervention but present information to the user
until they become disabled by another task, IITs require human intervention such as
data input. The tasks are also annotated with the objects that are read, modified, cre-
ated or declared and refer to the related classes of the domain model. A reification of
the interaction in terms of details is provided by the interaction model. It encloses an
abstract interaction description that is modality independent and a concrete interaction
description that adds the modality dependent information. Additionally, by mappings
between the interaction and the layouting model (5) presented in [20], absolute posi-
tions and element sizes of the concrete interaction objects are calculated based on the
context model (6) and filled with information delivered by various sensors at runtime.
Thus, each SI state will be composed of encapsulated sets of enabled tasks. Each

 Automated Usability Evaluation 137

atomic task is linked to the concrete domain object class and the relevant class attrib-
utes which are presented in the interface together with the expected user operation
(read, create or modify) (3). Further, the relevant interaction model elements and the
calculated layouting information are added for each enabled task of the SI state (5).
Finally a cascading style sheet defining the style for the graphic elements of the con-
crete model is attached to the SI state.

Interaction
Model

Interaction
Model

Service
Model
Service
Model

Tasks
Model
Tasks
Model

Context
Model
Context
Model

Layouting
Model

Layouting
Model

Domain
Model
Domain
Model

ss

ss

ss

ss ss

ss

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 1. Overview of the involved runtime MASP models, separating multiple levels of abstrac-
tion. Each model comprises (part of) the runtime state(s).

The relation between the models is formalized by mappings which support the ex-
change of information between the models and keep the models synchronized. Figure 1
shows the different models and how they are related. At runtime each model contains
additional state information, allowing the derivation of the final UI according to the
state of the application. Through the utilization of mappings between the models, we
support an information flow at runtime, which allows identifying active elements of the
models based on the enabled task set. The derived SI state allows the creation of a final
UI which can be evaluated by an AUE tool as described in the next section.

From the AUE perspective, the runtime interpretation of the UI models creates a
SIM containing SI states, which describe the interface and interaction capabilities of
the evaluation target. The UI elements contained in a SI state are communication
elements with different interactions, e.g. a button can be used with left click or right
click as input interaction, whereas the information of the caption is carried through an
output interaction from the system to the user. Every input interaction and the succes-
sive SI state, which is enabled after the interaction, are encapsulated in a transition to
the subsequent SI state. In the simulation phase the SIM is mapped to a dynamic SIM
representation which is handed over to the simulator for interaction with the user
interaction model (UIM). The simulator continuously presents SI states to the UIM
and maps the input interactions, chosen by the UIM depending on the current user
task, to the corresponding transitions of the SIM.

3.2 User Action Generation

After the MASP presents the SI state to MeMo, the information processing unit (IPU)
of the UIM evaluates all input and output interactions and manipulates the data stor-
age which is used by the planning unit for the final interaction selection process. Both
modules are influenced by two types of user attributes (UA). Static UA express the
characteristics of a user group and cannot be influenced by the simulation process,
whereas dynamic UA (DUA) are flexible properties of a user.

138 S. Feuerstack et al.

Fig. 2. The components of the user interaction model and the interaction selection process

As shown in figure 2 the knowledge of the UIM is divided into three categories.
While the task knowledge describes the knowledge which has to be exchanged to
successfully accomplish a task, general knowledge describes knowledge all user
groups have in common and domain knowledge depends on the system to be evalu-
ated, e.g. experts know where to look for required information in the system.

During the analysis process, the UIM has to handle four different situations: re-
ceiving new information (1), already known information (2), known information with
differing values (3), or a request for information (4). Situations 1 and 2 are easy to
handle. Either the UIM already knows what the system is presenting or the UIM
stores the presented information in its data storage. Situation 3 is a mismatch between
the knowledge of the UIM and the presented information by the system. The UIM can
react in different ways. If the mismatch refers to the task knowledge, the UIM stores
the wish for correction in its working memory, otherwise its domain or general
knowledge will be corrected. If the requested information in situation 4 is contained
in its knowledge, the UIM is able to respond to the request.

After analyzing the output interactions, the rule engine is called to modify the dy-
namic user attributes according to DUA rules. The DUA influence the intention of the
UIM, e.g. high frustration or irritation level increase the probability of a task abortion,
time pressure reduces the probability for requesting help. Four intentions are imple-
mented so far: forward, cancel, help and abort. If the UIM has the intention forward,
it tries to transfer its task knowledge to the system and therefore prefers interactions
which support the transfer. In case that no interaction is preferred the UIM tries to
navigate in order to analyze further states. If the UIM is navigating and believes fur-
ther navigation is not possible or reasonable the intention turns to cancel and the UIM
tries to navigate back. In case it could find neither interactions for knowledge transfer
nor meaningful interactions for navigation, the intention becomes help. The intention
abort leads to an abort of the current task.

After the intention alteration the UIM starts to evaluate the available input interac-
tions. Assuming the intention is forward, the UIM tries to transfer its task knowledge
to the system and therefore prefers interactions which support the transfer. These
interactions are set up with a higher probability of selection. In case that no interac-
tion was preferred by the IPU, the planning unit systematically evaluates the UI

 Automated Usability Evaluation 139

objects for navigational functionalities (navigation objects) in correlation with its
knowledge and increases their interaction selection probability. If the intention is not
forward, the UIM tries to find navigation objects related to its intention, e.g. the
intention is help it prefers buttons labelled with “?”, “i” or “Help”. In case that no
interaction related to help or cancel can be identified, the intention will be set to
abort and the UIM gives up. Finally each interaction is set up with a probability of
selection, whereas the preferred interactions have higher probabilities than alterna-
tive interactions. In order to modify these probabilities, the rule engine analyzes the
complete SI state and generates facts for numerous attributes of the UI objects. A
dice throw selects the interaction according to the probabilities. The selected interac-
tion is given back to the MASP which generates a new SI state. The interaction se-
lection process will be started again until the task is finished or the UIM aborts the
process.

4 Evaluation Process and Results

All data collected during the simulation is captured with the help of a logging module
and stored in log files. With the help of an internal view the designer gains access to
simulation details for each task, user group and iteration of the simulation. This way,
the designer can retrace every interaction the UIM has chosen. This information con-
sists of the interaction element, the list of triggered rules, the probability distribution
of the available interactions and further statistics, e.g. execution time. A portion of
these data is visualized within an interactive graph (compare figure 3). Each node of
this graph represents a SI state which has been passed by the UIM and each transition
represents the chosen interaction. Deviations from the shortest goal driven path are
highlighted in different colors This helps the designer to easily uncover problematic
SI states and to find reasons for the deviations, because in the current state of imple-
mentation the workbench is not offering this level of critique by itself. As described in
section 1 the MeMo workbench evaluated the interactive Cooking Assistant (CA)
which is presented to the workbench by the MASP. In the following, evaluation re-
sults of several simulation runs are described.

With the help of the rule engine, several limitations of the CA regarding its usabil-
ity were exposed. Figure 3 illustrates a problematic iteration in which the UIM acci-
dently chose a different meal from a list of presented meals and did not discover this
fact immediately in the state RecipeDetails. In fact the probability of this interaction
is low, but the consequences might cause costs for the user, e.g. buying ingredients
for a different recipe as intended. In the subsequent state a dialog in which the number
of persons to whom the meal should be prepared for was presented to the UIM. In this
state the name of the meal is not displayed and therefore the UIM did not discover its
wrong meal choice. The same problem occurs in the state ShoppingList, where the
UIM can decide whether to continue with the CA or prepare a shopping list with the
necessary ingredients. Finally the UIM is able to discover its wrong meal choice in
the last state of figure 3.

In this dialog the information of the chosen meal is displayed and returned to the
user as output interaction. The only input interaction to undo the selection is via a link

140 S. Feuerstack et al.

Fig. 3. An interactive graph which displays user interactions and presented SI states

to the start page in the upper left corner of the screen. As a result of its non-conform
coding as a link it might not be recognized as an interaction element and the rule
engine therefore reduces its interaction probability. Within a couple of iterations the
UIM did not choose this interaction which has the consequence that the user finds no
proper interaction to correct the meal selection and therefore aborts the task.

Another result of the evaluation was the low contrast of the font compared to the
underlying interaction elements and furthermore the low contrast of some buttons
compared to the background, e.g. a small white font was used on light blue buttons.
The rule engine discovered this fact and reduced the interaction probabilities for user
groups representing elderly people with poor vision. These user groups had a higher
probability of not finding the appropriate interaction element and therefore choosing
an alternative interaction that deviated from the shortest goal driven path.

Finally, using standard labels for some interaction elements (e.g. “Next”) to
achieve higher coherences could improve the usability as well, which was confirmed
by further simulations done with the help of the workbench.

5 Conclusion and Outlook

In this paper we presented our approach to utilize user interface design and runtime
models to support an AUE of the modeled system. Utilizing the models allows skip-
ping the usually required manual annotation of the final UI with the underlying design
concepts. The approach also makes the evaluation of multi-platform and context
adaptive user interfaces much more straightforward because the automated system is
able to make assumptions about context parameters or used platforms. Thus it can
evaluate multiple variants of the UI much easier. We have also shown the evaluation
of one of our applications which revealed several usability problems.

For the near future we plan to extend the approach to consider more details of the
UI descriptions as well as to consider multimodal aspects of the UI and extended
context information (e.g. voice-based feedback could help noticing the selection of a
wrong recipe earlier). We would like to support the evaluation of different context
situations, e.g. simulating migrated or distributed UIs. Along with the challenge, we
would also like to enrich the perception of the UIM by concerning further mental
aspects. Finally our goal is to automatically make constructive suggestions (beyond
critique) for improving the usability.

 Automated Usability Evaluation 141

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interacting with Com-
puters 15(3) (2003)

2. Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., Creemers, B.: Dygimes:
Dynamically generating interfaces for mobile computing devices and embedded systems.
In: Mobile HCI (2003)

3. Mori, G., Paternò, F., Santoro, C.: Design and development of multidevice user interfaces
through multiple logical descriptions. IEEE Trans. Softw. Eng. 30(8) (2004)

4. Reichard, D., Forbrig, P., Dittmar, A.: Task models as basis for requirements engineering
and software execution. In: Proceedings of TAMODIA (2004)

5. Blumendorf, M., Lehmann, G., Feuerstack, S., Albayrak, S.: Executable Models for Hu-
man-Computer Interaction. In: Proc. of DSV-IS (2008)

6. Blumendorf, M., Feuerstack, S., Albayrak, S.: Multimodal smart home user interfaces. In:
Proc. of IUI4AAL Workshop on IUI 2008 (2008)

7. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv. 33(4) (2001)

8. Tarta, A., Moldovan, G.: Automatic Usability Evaluation Using AOP. In: IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics, vol. 2, pp. 84–89. IEEE
Computer Society, Los Alamitos (2006)

9. Ritter, F.E., et al.: High-level behavior representation languages revisited. In: ICCM
(2006)

10. Paternò, F., Piruzza, A., Santoro, C.: Remote web usability evaluation exploiting multimo-
dal information on user behaviour, pp. 287–298. Springer, Heidelberg (2006)

11. Teo, L., John, B.E.: Comparisons of keystroke-level model predictions to observed data
CHI 2006: CHI 2006 extended abstracts on Human factors in computing systems, pp.
1421–1426. ACM Press, New York (2006)

12. Lynch, G., Plamiter, S., Tilt, C.: The max model: A standard web site user model. In: 5th
Conference of Human factory & the Web (1999)

13. Fine, N., Brinkman, W.: EUSAI 2004, pp. 15–18. ACM, New York (2004)
14. Sears, A.: Aide: a step towards metric-based interface development tools. In: UIST (1995)
15. Byrne, M.D., Wood, D., Sukaviriya, P.N., Foley, J.D., Kieras, D.E.: Automating interface

evaluation. In: CHI Conference Companion (1994)
16. Braudes, R.E., Sibert, J.L.: Conmod: a system for conceptual consistency verification and

communication. SIGCHI Bull. 23(1) (1991)
17. Elwert, T., Schlungbaum, E.: Modelling and generation of graphical user interfaces in the

tadeus approach. In: DSV-IS (1995)
18. Jameson, A., Mahr, A., Kruppa, M., Rieger, A., Schleicher, R.: Looking for unexpected

consequences of interface design decisions: The memo workbench. In: Winckler, M.,
Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, Springer, Heidelberg
(2007)

19. Feuerstack, S., Blumendorf, M., Albayrak, S.: Prototyping of multimodal interactions for
smart environments based on task models. In: European Conference on Ambient Intelli-
gence: Workshop on Model Driven Software Engineering for Ambient Intelligence Appli-
cations (2007)

20. Feuerstack, S., Blumendorf, M., Schwartze, V., Albayrak, S.: Model-based layout genera-
tion. In: Proc. of Advanced Visual Interfaces (2008)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 142–149, 2008.
© IFIP International Federation for Information Processing 2008

Integrating Groupware Notations with UML

William J. Giraldo1, Ana I. Molina2, Manuel Ortega2, and Cesar A. Collazos3

1 Systems and Computer Engineering, University of Quindío, Quindío, Colombia
wjgiraldo@uniquindio.edu.co

2 Department of Information Technologies and Systems. Castilla – La Mancha University
{AnaIsabel.Molina,Manuel.Ortega,Miguel.Redondo}@uclm.es

3 IDIS Research Group, University of Cauca, Popayán, Colombia
ccollazo@unicauca.edu.co

Abstract. In this paper we introduce a notation integration proposal. This pro-
posal supports the user interface design of groupware applications enabling in-
tegration with software processes through UML notation. We introduce our
methodological approach to deal with the conceptual design of applications for
supporting group work, called CIAM. A study case (the design of a Conference
Resiew System) is presented to describe our proposal. The integration process
proposed is supported by a software tool called CIAT.

Keywords: GUI development, groupware design, interaction design.

1 Introduction

The groupware system design integrates disciplines such as Software Engineering
(SE), CSCW, and Usability Engineering (UE), therefore, it requires the interaction of
multiple stakeholders by using their own specific workspaces [1, 2]. Typically, these
workspaces support modelling diagrams using different notations. It is necessary that
the specified information on each workspace could serve as a complement for the
modelling on other workspaces. The integration of approaches of model-based design
and development with UML notation is conceptually possible to relate main concepts
of Human Computer Interaction (HCI) to the classic ones in SE [3]. The approach of
the fields of the HCI and the SE are taking a great importance and attention in the last
years [4, 5]. On the one hand, the SE begins to consider usability like a quality attrib-
ute that must be measured and promoted [6]. On the other hand, if the proposed tech-
niques in HCI want to gain solidity within the SE field they should clearly indicate
how to integrate their techniques and activities within the process of software devel-
opment. Nowadays, there is a growing number of proposals for the development of
collaborative systems, however, there is still a gap between the development process
of the functionality of these systems and the development of their user interface, par-
ticularly, proposals that combine group work applications and interactive aspects.
CIAM (Collaborative Interactive Applications Methodology) is a proposal to assist
designer with methodological support for modelling systems for group work [7].
CIAM proposes a specific notation called CIAN [8], which promotes modelling col-
laboration, communication and coordination. CIAN adequately supports modelling

 Integrating Groupware Notations with UML 143

collaboration, but does not allow modelling the system functionality. In this sense we
need UML. Similarly, neither UML nor RUP are intended for the design of interactive
system considering usability features. In order to complete the development process
of groupware systems, modelling the interaction and collaboration, supported by
CIAN, this process must be supplemented adequately to improve the modelling of the
functionality, which is based on the use of standard UML notation. Our aim is to
integrate the information specified with CIAN with the information gathered in the
UML models, and so, try to reduce the gap between the development of the interface
and the software development process, as well as the mapping between the two types
of notations. This purpose is achieved by specifying a taxonomy to define methods,
rules, principles and terms for classifying and organizing all necessary information for
the specification of groupware systems.

This paper is organized in the following way: section 2 introduces our methodo-
logical approach for designing interactive groupware applications, presenting a brief
explanation of its stages and the aspects that can be specified in each one. Also, some
aspects of the CIAN notation are described in this section. Section 3 introduces the
integration proposal, especially the taxonomy. Section 4 presents an example which a
case study is used. Finally, the conclusions and further work is presented.

2 CIAM: A Methodological Approach for User Interface
Development of Collaborative Applications

In this section we present the stages in our methodological approach. CIAM is an
approach based on Model Driven Development (MDD), which promotes the use of
models to simplify the complexity of groupware design. CIAM is supported for a
notation called CIAN [8] (Collaborative Interactive Applications Notation). CIAM
considers the interactive groupware modelling in two ways: the group-centred model-
ling and the process-centred modelling. Initially, the social relations are studied and
an organizational scheme is specified. Next, the group work is modelled. The model-
ling process is more user-centred when we go deeper into the abstraction level, in
which interactive tasks are modelled, that is, the dialog between an individual user
and the application is modelled. In this way, collaborative aspects (groups, process)
and interactive (individual) modelling problems are tackled jointly. The stages on this
proposal (Figure 1) and their objective are enumerated as follows:

Fig. 1. CIAM methodological proposal stages

144 W.J. Giraldo et al.

The Sociogram Development is the fist stage of the methodological approach.
In this stage, the organization structure is modelled, as well as the relationship be-
tween its members. Organization Members belong to these categories: roles, actors,
software agents; or in associations of them, forming groups or work teams. The
elements in those diagrams can be interconnected by means of three kinds of basic
relationships (inheritance, acting and association). In the Inter-Action Modelling
stage, the main tasks that define group work performed in the previously defined
organization are described. For each task, the roles involved, the data manipulated
and the products generated are specified. Each task must be classified in one of the
following categories: group or individual tasks. Tasks will be interconnected by
means of several kinds of relationships (temporal or data relationships). In Respon-
sibilities Modelling stage, the individual and shared responsibilities of each role are
modelled. In Group Tasks Modelling stage the group tasks identified in the previ-
ous stage are described in a more detailed way. There are two different kinds of
tasks, which must be modelled in a differentiated way: cooperative and collabora-
tive tasks. Collaborative Tasks modelling includes specification of the roles in-
volved, as well as the data model objects manipulated by the work team (that is, the
shared context specification). Once the objects that make up the shared context
have been decided, it is necessary to fragment this information into three different
parts: the objects and/or attributes manipulated in the collaborative visualization
area, the ones which appear in the individual visualization area and the ones that
make up the exclusive edition segment (a subset in the data model that is accessed in
an exclusive way for only one application user at the same time). Finally, in the
Interaction Modelling stage, interactive aspects of the application are modelled
using the notation. An interaction model for each individual task detected in the
diverse stages of the gradual refinement process is created. An interactive tasks
decomposition tree in CTT [9] is developed. In the case of collaborative tasks, the
interactive model is directly derived from the shared context definition. Our meth-
odological approach includes the way of obtaining this model from the shared con-
text modelling [8].

3 The Integration Proposal

Our integration proposal is based on the assumption that an interactive groupware
system can be classified and, therefore, modelled through one or more abstraction
layers and using several families or sets of specifications. This idea, expressed
graphically in Figure 2, leads to the definition of our proposal. Each layer could be a
stand alone software component. A layer is a set of diagrams organized according to a
particular criterion, for example: diagrams modelled with the same notation, diagrams
representing a particular abstraction, diagrams representing a quality indicator, etc. In
this paper our interest is centered in the integration of some models in CIAN and
UML; however, our integration proposal can be applied to a large number of nota-
tions, each one appropriate to specify different aspects of the system.

The integration layer we propose is based on the Zachman Framework [10]. This
Framework proposes a systematic taxonomy that allows us associating concepts that

 Integrating Groupware Notations with UML 145

describe the real world with those who describe their information system and its
subsequent implementation. This taxonomy is defined in two dimensions organized in
perspectives and views. We use only the business model, system model and technol-
ogy model perspectives and the data, function, network and people views. The inter-
section of views and perspectives leads to 12 Modelling cells, (Figure 2). Each cell
provides a container for models that address a particular perspective and view. The
Framework provides a representation from different points of view, different levels of
granularity, generality and abstraction.

Fig. 2. Integration layer structure and MDA mapping

A perspective is an architectural representation at a specific abstraction level and
represents a set of logical or physical constraints that may affect the development of a
system at that level. This classification by using perspectives enable designers to
establish independence between different levels of abstraction, however, it is neces-
sary to have a solid architecture that allows its subsequent integration. MDA (Model
Driven Architecture) [11] is an architecture that promotes design guided by models
and, as can be seen in Figure 2, there is a relationship between the perspectives and
levels of MDA. The concept of view, or abstraction, is a mechanism used by designers
to understand a specific system aspect. A key issue in software architectures (perspec-
tive) is the support to handle different levels of abstraction. The abstraction is the tool
that enables software developers to manage the complexity of their developments.
During development we focus, first, on abstractions, and later on implementations
that are derived from these abstractions. With the aim at obtaining integrity, unique-
ness, consistency and recursion of the information specified, taxonomy defines a
series of rules. Therefore, the seven rules of the Zachman Framework has been
adopted and refined [12]. Examples of these rules are: (R2) All of the cells in each
column-view-is guided by a single metamodel. (R5) The composition or integration
of all models of the cells in a row is a complete model from this perspective. (R7) The
logic is recursive.

146 W.J. Giraldo et al.

4 Case Study: A Conference Review System

In this section a brief example of the application of this method for integrating CIAN
and UML is presented. This proposal is supported by a tool, called CIAT (Collabora-
tive Interactive Applications Tool). CIAT [13] is an Eclipse-based tool that helps
developers to specify models using CIAN. Eclipse Framework provides tools for
guiding the software modelling by using metamodel concepts [14]. By using the EMF
(Eclipse Modelling Framework) and GMF (Graphical Editing Framework), we de-
sign the CIAT tool as an Eclipse Plug-in. We have chosen a Conference Review Sys-
tem as a case study, extracted from [15].

Fig. 3. Integration example between CIAN and UML by using the CIAT tool

 Integrating Groupware Notations with UML 147

In this section we are going to present the transformation from CIAN to UML of
the information specified in the Sociogram Development, the Group Task Modelling
and the Inter-Action Modelling stages. As it has been indicated previously, the So-
ciogram is a diagram that allows representing the organizational structure, as well as
the relationships that can exist among its members. In our case study we have the
following roles: PCChair, PCMember, Reviewer, Author and CoAuthor.

The Figure 3(c) shows the structure of the organization in CIAN notation. In par-
ticular, the mapping process from the diagram called Sociogram of CIAN and its
corresponding representation in UML notation is shown (Figure 3 (c) to Figure 3
(g) and Figure 4). The information regarding the roles and relationships among
organization members, as it is shown in the Sociogram, is processed through the
transformations to generate partial information of Business Model and System
Model perspectives. This information is classified into these two perspectives for
the People view mainly. Each actor in CIAN can represent both a Business Actor as
a System Actor in UML. The first transformation generates an UML Business Actor
diagram -Figure 4(c) - from the Sociogram in CIAM -Figure 4(a). The People col-
umn -Figure 4(b) - contains information that relates these two models. The h4 rela-
tionship -Figure 4(d) - establishes the inheritance relationship on Author and
CoAuthor. The relationships dependency and association do not have direct repre-
sentation in UML; however, information must be stored to generate other artifacts.

The Inter-Action diagram, see Figure 3(a), illustrates the system macro activities
and their interdependencies. This model is essential, because certain temporal infor-
mation (precedence and coordination information) is represented. This information
can be enriched through using information related with the domain (that is extracted
from the models of the ES process). This diagram provides information about the
preconditions, post conditions, messages and data that are required or generated by
the activities. UML lacks a diagram of this type.

Fig. 4. Transformation process by using CIAT

The Inter-Action diagrams are very rich in information to populate the integration
layer. The Figure 3(d) illustrates the information extracted from this diagram. The
transformations separate information as follows: (1) The Inter-Action activities are

148 W.J. Giraldo et al.

associated with business use cases. The cooperative activities are transformed into
diagrams activity. (2) The interdependencies are associated with preconditions, post
conditions and events among various activity diagrams. (3) The domain objects are
associated with business entities. A business object diagram is derived from the in-
formation in each activity, which is related with roles and objects.

Figure 5 shows in a more detailed way the mapping between the Inter-Action
model (Figure 5(b)) and UML diagrams that specifies the same information (business
uses cases, Figure 5(c), and the activity diagram, Figure 5(g)). The integration is
based on information from the Process column (function) -Figure 5(a)- and the Time
column -Figure 5(d)- into the integration layer. The variables cicle4, event4 and
event5 have the information needed to build the activity diagram in UML. See Figure
5(e,f,h), respectively. The variables of type event become preconditions or postcondi-
tions of business use cases. In Figure 5(g) is observed as the event4 and event5 are
transformed into the guard [Congress.Beginning.Date] and the object node "Paper".
Similarly, the variable “Reviews Distribution task” stores the information required to
relate the business use case with their respective Actors - Figure 5(i).

Fig. 5. Detailed integration example between CIAN and UML

5 Conclusions

In this paper we have shown a brief picture of our methodological proposal for mod-
elling interactive groupware applications and an integration proposal of the notation
used in this approach (called CIAN) into the Unified Development Process (supported
by the UML notation). This integration proposal is based on the definition of a inte-
gration layer (taxonomy) and it is supported by a tool called CIAT. We have used a
case study in order to explain the integration method by using our integration layer.

 Integrating Groupware Notations with UML 149

The integration proposal presented can be extended to support the integration of a
large number of notations. The implemented tool allows the stakeholders involved in
the development of a groupware system to construct models, supported by a suitable
workspace and using specific notations in their specific domains. Besides, thanks to
the use of GMF, CIAT can be integrated with other tools and services available in
Eclipse project.

Acknowledgements. This work has been supported by the Universidad del Quindío,
Castilla–La Mancha University and Junta de Comunidades de Castilla–La Mancha in
the projects AULA-T (PBI08-0069), mGUIDE (PBC08-0006-512) and M-CUIDE
(TC20080552).

References

1. Molina, A.I., Redondo, M.A., Ortega, M.: A conceptual and methodological framework
for modeling interactive groupware applications. In: Dimitriadis, Y.A., Zigurs, I., Gómez-
Sánchez, E. (eds.) CRIWG 2006. LNCS, vol. 4154, Springer, Heidelberg (2006)

2. Gutwin, C., Greenberg, S.: Design for Individuals, Design for Groups: Tradeoffs between
power and workspace awareness. In: ACM CSCW 1998. ACM Press, Seattle (1998)

3. Artim, J., et al.: Incorporating work, process and task analysis into industrial object-
oriented systems development. SIGCHI Bulletin, 30(4) (1998)

4. Granollers, T., et al.: Integración de la IPO y la ingeniería del software: MPIu+a. In: III
Taller en Sistemas Hipermedia Colaborativos y Adaptativos, Granada España (2005)

5. Ferré, X., Moreno, A.M.: Integración de la IPO en el Proceso de Desarrollo de la In-
geniería del Software: Propuestas Existentes y Temas a Resolver. In: V Congreso Interac-
ción Persona-Ordenador (Interacción, 2004. Lleida, España (2004)

6. Ferre, X., Juristo, N., Moreno, A.M.: Improving Software Engineering Practice with HCI
Aspects. In: SERA. Springer, Heidelberg (2004)

7. Molina, A.I., et al.: CIAM: A methodology for the development of groupware user inter-
faces. Journal of Universal Computer Science(JUCS) (2007)

8. Molina, A.I., Redondo, M.A., Ortega, M.: A conceptual and methodological framework
for modeling interactive groupware applications. In: Dimitriadis, Y.A., Zigurs, I., Gómez-
Sánchez, E. (eds.) CRIWG 2006. LNCS, vol. 4154. Springer, Heidelberg (2006)

9. Paternò, F., Mancini, C., Meniconi.: ConcurTaskTree: A diagrammatic notation for speci-
fying task models. In: IFIP TC 13 International Conference on Human-Computer Interac-
tion Interact 1997. Kluwer Academic Publishers, Sydney (1997)

10. Zachman, J.A.: A Framework For Information Systems Architecture. IBM Ssystems Jour-
nal 26(3) (1987)

11. Miller, J. and J. Mukerji. MDA Guide Version 1.0.1. (2003) [cited 08-07-2007], http://
www.appdevadvisor.co.uk/express/vendor/domain.html

12. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for information sys-
tems architecture. IBM Syst. J., 590–616 (1992)

13. Giraldo, W.J., et al.: CIAT, A Model-Based Tool for designing Groupware User Interfaces
using CIAM. In: Computer-Aided Design of User Interfaces VI, CADUI 2007, España:
Springer, Heidelberg (2008)

14. Moore, B., et al.: Eclipse Development using the Graphical Editing Framework and the
Eclipse Modeling Framework. Redbooks: ibm.com/redbooks (2004)

15. Schwabe, D., Rossi, G.: Conference Review System in OOHDM. International Workshop
on Web Oriented Software Technology Volume (2001)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 150–165, 2008.
© IFIP International Federation for Information Processing 2008

MuiCSer: A Process Framework for
Multi-disciplinary User-Centred Software

Engineering Processes

Mieke Haesen, Karin Coninx, Jan Van den Bergh, and Kris Luyten

Hasselt University -tUL -IBBT, Expertise Centre for Digital Media,
Wetenschapspark 2, 3590 Diepenbeek, Belgium

{mieke.haesen,karin.coninx,jan.vandenbergh,
kris.luyten}@uhasselt.be

Abstract. In this paper we introduce MuiCSer, a conceptual process framework
for Multi-disciplinary User-centred Software Engineering (UCSE) processes.
UCSE processes strive for the combination of basic principles and practices
from software engineering and user-centred design approaches in order to in-
crease the overall user experience with the resulting product. The MuiCSer
framework aims to provide a common understanding of important components
and associated activities of UCSE processes. As such, the conceptual frame-
work acts as a frame of reference for future research regarding various aspects
and concepts related to this kind of processes, including models, development
artefacts and tools. We present the MuiCSer process framework and illustrate
its instantiation in customized processes for the (re)design of a system. The
conceptual framework has been helpful to investigate the role of members of a
multi-disciplinary team when realizing artefacts in a model-based approach. In
particular process coverage of existing artefact transformation tools has been
studied.

Keywords: User-Centred Software Engineering, User-Centred Design, Process
Framework.

1 Introduction

The perceived quality of the user experience of an interactive application is well em-
phasized nowadays. It has raised attention from the HCI community for user-centred
design (UCD) approaches. Key issues in UCD processes that contribute to the overall
user experience with the resulting product are continuous attention for the end-user
needs, iterative (and possibly incremental) design and development, and a dominant
presence of evaluation with respect to external quality attributes such as usability,
accessibility and apparent performance [9]. UCD approaches have proven their value
for interactive systems development for new as well as for legacy systems. We have
the impression, however, that redesign of legacy systems places higher demands on
the process being used due to the need to capture existing knowledge and reuse re-
quirements from existing documentation. Besides analysis and design artefacts such

 Multi-disciplinary User-Centred Software Engineering Process Framework 151

as diagrams and models related to the application back end, the running system itself
and manuals are valuable sources. Because diagrams and models related to the appli-
cation back end (e.g. UML diagrams) often result from a software engineering (SE)
process, there is a search to combine basic principles and practices from the SE do-
main and UCD approaches in order to define an overall process that fulfils the needs
of a multi-disciplinary design team. We coin the processes that unite both HCI and SE
perspectives as “User-Centred Software Engineering Processes” (UCSE processes).

Based on former research results, we explore extensions of model-based user inter-
face development approaches to bridge the gap with SE approaches such as model-
driven development. A model-based approach typically employs different types of
models, thereby conveying enough information to generate the skeletons for concrete
user interfaces. Models still tend to emphasize facilitating the more technical phases
in application development over the creative design phase and overall development
cycle. Overcoming these shortcomings in a unified HCI and SE approach, and paying
attention to multi-disciplinary teams are a necessity to allow for a pragmatic approach
and applicability of model-based techniques in real-world projects.

To accommodate for both flexibility in selecting the techniques for one particular
UCSE process and consistency in models in consecutive developments, we prefer
starting from a conceptual process framework rather than a single, exhaustively de-
fined UCSE process. The conceptual process framework can be considered as a ge-
neric process that can be customized or instantiated for the specific design task at
hand. Though UCD research in the HCI community is focused on processes, process
frameworks are gaining importance in the software engineering community (e.g. The
Eclipse Process Framework1). Therefore, we believe this approach is helpful to strive
at the same time for practical processes for applied research and for a comparison and
evaluation framework, driving research activities regarding models, development
artefacts and tools.

In this paper, we present our proposal for a UCSE process framework and detail
the tools, models and artefacts that support the approach. This process framework has
been the basis for two process instances employed during case studies, which are also
used to summarize some lessons we learned. A discussion of our current and future
work, as well as conclusions are presented.

2 The MuiCSer Process Framework

Comparable to several UCD approaches, our process framework for Multi-
disciplinary user-Centred Software engineering processes, MuiCSer, focuses on the
end-user needs during the entire SE cycle in order to optimize the user experience
provided by the software that is delivered. The user experience is typically determined
by measuring the usability, accessibility, availability of required functionality etc. of
the delivered application.

Based on our experiences and observations when working with multi-disciplinary
teams, we are gradually introducing model-based processes in applied research em-
bodies UCD with a structured Agile Software Engineering (ASE, [11]) approach

1 http://www.eclipse.org/epf/

152 M. Haesen et al.

Fig. 1. Our MuiCSer process framework. The dark arrow indicates the overall design and de-
velopment direction. The light arrows indicate feedback from evaluation, verification and vali-
dation efforts.

and organizes the creation of interactive software systems by a multi-disciplinary
team. We will support different models throughout processes that are derived from the
framework, where each model describes a specific aspect of an interactive system and
represents the viewpoint of one or more specific roles in the multi-disciplinary team.
The need for communication with end-users or customers results in additional models
or artefacts (e.g. low-fidelity and high-fidelity prototypes) on top of the commonly
used models in a model-driven approach. This has also a positive effect on the visibil-
ity and traceability of the processes that are based on our process framework, in par-
ticular when artefacts are stored in a central repository: the models and artefacts
describe the status of the system being designed at various stages, support the design
decisions made during these processes and are ready for use in the next iteration.

Fig. 1 gives an overview of the proposed process framework. Existing UCD ap-
proaches such as GUIDE [23], Effective Prototyping [1] and Rapid Contextual De-
sign [8] can be represented using this framework. Likewise, when projects are carried
out following a UCSE approach, the approach that is used, can be seen as a process
that is created according to the MuiCSer process framework. Both functional and non-
functional requirements are tackled by the process framework and unlike traditional
software engineering processes, it supports processes with a continuous and smooth
integration between user interface design and software development. The next para-
graphs discuss the properties of the process framework we propose in more detail.

 Multi-disciplinary User-Centred Software Engineering Process Framework 153

MuiCSer processes typically start with an analysis phase in an initial iteration
where the users tasks, goals and the related objects or resources that are important to
perform these tasks are specified. If the user experience of a legacy system needs to
be optimized, the functionality of such a system can be often found in existing manu-
als and also contributes to the analysis. Several notations are used to express the re-
sults of the analysis phase: HCI experts take a user-centred approach and commonly
use domain-specific notations to express the task model and use personas to identify
the user characteristics that are important. The software engineer specifies the re-
quired behaviour of the system with use cases and behaviour diagrams. Although the
relationship between both is clear, linking them in an engineering process remains a
difficult issue. However, when a process framework helps to define what artefacts are
important in which stages and how progress from abstract to concrete models can be
realized, this helps to identify, create and relate the required models in each stage.

During the structured interaction analysis, the results of the analysis are used to
proceed towards system interaction models and presentation models. These models
are often expressed using the UML notation, thus keeping in pace with the traditional
SE models.

Since both user needs and functional information are specified, they can both serve
as input for the low-fidelity prototyping stage, as is shown in Fig. 1. User interface
designers create mockups of the user interface, based on the information contained in
the task and interaction models, while using design guidelines and their experience. In
subsequent phases, low-fidelity prototypes are transformed into high-fidelity proto-
types, which on their turn evolve into the final user interface while each stage is re-
lated to the artefacts created in a previous stage.

By evaluating the result of each stage, the support for user needs and goals and the
presence of required functionality is verified. If possible, an evaluation with target
users can be very useful to get feedback from the end-user directly. Because most of
the artefacts do not present a fully functional system, part of the testing takes place in
a usability lab. To evaluate some advanced prototypes, field tests can examine the
user interface in more realistic situations. If the results of a phase are not suited (e.g.
too complex) to involve an end-user during evaluation, it is still necessary to evaluate,
verify or validate the models or prototypes, e.g. in meetings with domain experts or
by performing an expert evaluation.

3 Tools and Models

In this section we discuss to what extent MuiCSer can be covered by existing tools for
the creation and transformation of artefacts and in what stages tool-support should be
improved. The current use of tools also reveals how the collaboration within multi-
disciplinary teams is supported. Besides the discussion of tools, this section gives an
overview of models that can be used in processes based on MuiCSer.

3.1 Artefact Transformation Tools

The process framework described in the previous section has been used in practice to
support several real-life cases. During the execution of the MuiCSer processes to

154 M. Haesen et al.

Table 1. An association of tools that can be used to support MuiCSer and their accessibility for
different roles in a multi-disciplinary team

 Tools

 W
o

rd
 p

ro
ce

ss
o

r
[1

]

P
re

se
n

ta
ti

o
n

 [
1]

S
p

re
ad

sh
ee

t
[1

]

D
ra

w
in

g
 [

1]

P
ap

er
 [

1]

P
D

F
 v

ie
w

er
 [

1]

P
ai

n
t

p
ro

g
ra

m
 [

1]

S
im

p
le

 p
ro

g
ra

m
m

in
g

 [
1]

H
T

M
L

 (
si

te
)

ed
it

o
r

[1
]

A
n

im
at

io
n

 t
o

o
l [

1]

A
d

va
n

ce
 p

ro
g

ra
m

m
in

g
 [

1]

C
T

T
E

 [
17

]

T
as

kS
ke

tc
h

 [
3]

V
is

ta
 E

n
vi

ro
n

m
en

t
[2

]

C
an

o
n

S
ke

tc
h

 [
3]

T
er

es
a

[1
8]

S
ke

tc
h

iX
M

L
 [

7]

D
am

as
k

[1
2]

G
ra

fi
X

M
L

 [
16

]

G
u

m
m

y
[1

4]

In
tu

iK
it

 [
4]

End-user 3 3
Purchaser,
manager of
user

3 3 3 3 3 3

Application
domain spe-
cialist

3 3 3 3 3 3

Systems
analyst,
systems
engineer,
programmer

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Marketer,
salesperson 3 3 3 3 3 3

UI designer,
visual
designer

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Human
factors and
ergonomics
expert, HCI
specialist

3 3 3 3 3 3 R
o

le
s

in
 a

 m
u

lt
i-

d
is

ci
p

in
ar

y
te

am

Technical
author, trainer
and support
personnel

3 3 3 3 3 3 3

develop these cases, some of which will be explained more into detail further in this
paper, we observed what tools members of the project team used to contribute in the
different stages of these processes. This information in combination with literature
that describes tools that fit in this process gave rise to Table 1. This table presents
different roles which can be part of a multi-disciplinary team [1, 8, 9] and the tools
associated with the role. The table shows that the leftmost tools are widespread and
accessible for different roles of the multi-disciplinary team, which is confirmed by
Campos and Nunes in [3].

Table 2 provides an overview of a selection of these tools and their applicability
for creating artefacts that are used in the HCI engineering process. We use the term

 Multi-disciplinary User-Centred Software Engineering Process Framework 155

Table 2. Overview of artefacts supported by artefact transformation tools

Artefacts

 S
ce

n
ar

io

U
se

 c
as

e

T
as

k
m

o
d

el

T
as

k
O

ri
en

te
d

 S
p

ec
if

ic
at

io
n

T
as

k
F

lo
w

D
o

m
ai

n
 m

o
d

el

A
ct

iv
it

y
D

ia
g

ra
m

s

U
se

r
In

te
rf

ac
e

A
rc

h
it

ec
tu

re

S
ys

te
m

 A
rc

h
it

ec
tu

re

A
b

st
ra

ct
 U

I

C
o

n
cr

et
e

U
I

CTTE [17] 3 3 3

TaskSketch [3] 3 3 3 3

Vista [2] 3 3 3 3

CanonSketch [3] 3 3 3

Teresa [18] 3 3 3

SketchiXML [7] 3 3 3 3

Damask [12] 3

Gummy [14] 3

GrafiXML [16] 3 A
rt

ef
ac

t
tr

an
sf

o
rm

at
io

n
 t

o
o

ls

IntuiKit [4] 3

artefact transformation tool to describe a tool that can be used by two or more differ-
ent roles and supports relating two artefacts or models. Such a tool allows to progress
the design and development of an interactive system involving different roles, often
by providing different views on the same artefact or model. The ways in which a tool
can manipulate, create relations or transform between artefacts and models are sum-
marized in [5].

Mapping these tools on the stages of MuiCSer (Fig. 1) results in the time-line
shown in Fig. 2. Most tools that are suitable for interactive, incremental and multi-
disciplinary user-centred processes are artefact transformation tools which comes as
no surprise. Fig. 2 also shows that it is possible to combine two or three tools to cover
most stages of MuiCSer. While Teresa [18] can be used to model tasks of a multi-
platform application and generate a system task model, an abstract user interface and
a concrete user interface, Gummy [14] can be used by designers to add creative as-
pects to the medium-to high-fidelity prototypes for multi-platform user interfaces.

The overview of tools in Fig. 2 also reveals that there is little tool support for the
transformation of the results of user studies into structured models. Furthermore,
when a new iteration takes place after a final user interface is deployed, there is no
single tool that completely covers MuiCSer. The main drawbacks of most of these
tools are their inaccessibility for non-experts and their relative immaturity for

156 M. Haesen et al.

Fig. 2. A timeline presenting the stages of MuiCSer and how artefact transformation tools can
be mapped on it

real-world software development processes. Several of the aforementioned tools are
being increasingly used in industrial projects, so we expect this situation will improve
rapidly. SketchiXML for instance is already suitable to be used by a wider range of
roles including designers and end-users [7]. Gummy supports the roles of software
developers and designers but this tool is gradually being extended to be used by ap-
plication domain specialists [13].

The following describes different models being created, changed and transformed
during the execution of MuiCSer processes in order to support a smooth transfer to-
wards the final user interface. The models and tools discussed in the remainder of this
section are not required. They provide a clear idea of how MuiCSer processes can be
instantiated with concrete models, notations and tools.

3.2 Structured Interaction Analysis

Task models are frequently used to specify requirements for an application from a
user’s point of view. Most task models have an hierarchical structure, allowing a
gradual refinement of the high-level tasks and goals into fine-grained actions and
activities. A task specification for a system can be found by transforming the re-
quirements text and the scenarios of the personas into a hierarchical task model with
temporal operators, such as the ConcurTaskTrees notation. Although this step is not
automated, the expert performing this step uses a set of (informal) rules and is sup-
ported by a tool such as CTTE [17].

This task model can be related to other user interface and software engineering
models expressed using e.g. UML diagrams, which are widely known by software
analysts and programmers. These user interface models can provide an alternative
view on the information captured in the task model [20, 24] or additional information
[21, 24].

3.3 Low-Fidelity Prototyping

Since the creativity of designers and other members of a multi-disciplinary team may
influence the user experience in positive way, MuiCSer does not imply the use of
specific tools or technologies to create low-fidelity prototypes. The first prototypes
can be created using pencil and paper or using a tool. Tools such as SketchiXML [7]
or CanonSketch [3] have the advantage that they provide support for the transition to

 Multi-disciplinary User-Centred Software Engineering Process Framework 157

high-fidelity prototypes. This ability to make the transition from low-fidelity to
high-fidelity using these tools and notations is illustrated by the drawing between the
low-fidelity and the high-fidelity stage in Fig. 1.

3.4 High-Fidelity Prototyping

For the high-fidelity prototyping stage, design and development tools that support
serialisation of the user interface design to (high-level) XML-based languages are
preferred. This allows more rapid prototyping of user interfaces that support a com-
mon set of tasks. Tools such as Gummy [14] or GrafiXML [16] even have specific
support for adapting the designs to different platforms, screen sizes or in general dif-
ferent contexts of use. A loose coupling with the application logic is preferred to en-
able reuse.

3.5 Final User Interface

To speed up development of the final user interface and to make it as flexible as pos-
sible, we preferably reuse as much as possible of the developed artefacts, such as the
XML-based high-fidelity prototypes and even selected models. A flexible user inter-
face management system allows the use of these models at runtime. Coupling for
example the task model to the user interface descriptions allows to check for task
coverage of the user interface and even selection of a subset of features for certain
users while ensuring that all remaining tasks are still valid. Using these artefacts in the
final user interface also ensures that they are still available and up-to-date for the
development of future increments.

4 Case Studies

We explain how MuiCSer can be used by describing two MuiCSer processes that are
customized for two cases, carried out within the VIP-lab project [6] The first case
study concerns the redesign of a legacy system while the second case study presents
the approach that has been used for the design of a new system. The project team was
not limited to computer scientists but also psychologists and social scientists were
involved and in some cases a graphic designer. Fig. 3 shows an overview of the
MuiCSer processes that are employed for these cases. For sake of clarity of the pres-
entation and to allow comparison, both processes are shown as a linear path without
emphasis on the intra-and inter-stage iterations.

4.1 NewsWizard

When a reporter is on location, he or she not only has to write an article. The biggest
challenge is often to configure a network connection to send the article to the editorial
staff. The NewsWizard prototype, developed in this case study, should ease the job of
a journalist on location by guiding him / her while making the appropriate network
connection and sending the article(s).

158 M. Haesen et al.

Fig. 3. MuiCSer process instances of the NewsWizard and the mobile game for children. In
both processes the verification between steps a and b, and steps b and c was done during brain-
storm meetings within the multi-disciplinary team, while the evaluation in later stages involved
end-users during lab and field tests.

 Multi-disciplinary User-Centred Software Engineering Process Framework 159

As recommended by MuiCSer, first the legacy system has been explored. Manuals
of the existing editor to write and send articles have been studied and the system was
demonstrated to the project team. Next journalists and photographers were observed
and interviewed by social scientists while they were collecting information and send-
ing it to the editorial office. Besides the comparison of the job of a contemporary
journalist and a photographer, this contextual inquiry resulted in primary and secon-
dary personas [22] and scenarios (Fig. 3 I.a, tool: word processor and PDF viewer).

At the second stage of this process which concerned the structured interaction
analysis, some task models were created by developers using the Hierarchical Task
Analysis (HTA) and CTT notation (Fig. 3 I.b, tool: drawing tool and CTTE). The veri-
fication of these task models was carried out during meetings with the project team.
The social scientists checked consistency with the observations, the personas and the
scenarios while the computer scientists examined the technical possibilities and repre-
sentatives of the news publishing agency verified the design according to the needs of
the journalists and their own expectations. The task models were refined within two
iterations. The threshold for progression is the agreement of the domain experts and
stakeholders on structure and content of the task model, scenarios and personas.

By putting together the results of the user and task analysis and the structured in-
teraction analysis, it became clear that journalists mainly experience problems when
they need to send an article on location. Consequently a user interface in wizard-style
was designed to collect articles and pictures (in case the journalist is not accompanied
by a photographer), followed by sending the data successfully. The relations between
the task model and the low-fidelity prototype on paper were determined manually and
the prototype was checked for completeness with respect to the task model during
meetings, similar to the meetings held during the structured interaction analysis stage.

In order to have a prototype that could be evaluated by journalists in a usability lab,
soon the low-fidelity prototype of NewsWizard evolved into a high-fidelity prototype
(Fig. 4, tool: advance programming tool). Although this was done manually, there is a
clear one-to-one mapping from each component in the low-fidelity prototype to each
component in the high-fidelity prototype. By consequence, the high-fidelity prototype
is also complete with respect to the task model. In three iterations and increments the
NewsWizard prototype was developed and functionality was added. After each

Fig. 4. Low-and high-fidelity prototype of the NewsWizard interface. The main part of the user
interface concerns the wizard. The user can navigate between steps using arrow-buttons or tab
pages.

160 M. Haesen et al.

iteration and increment the UI was evaluated by journalists in a portable usability lab
(Fig. 3 I.d). In order to evaluate the prototype in the natural environment of a reporter,
some field tests were carried out (Fig. 3 I.e). During the field tests, the participating
journalists were observed and interviewed while accomplishing a realistic assignment
on location using NewsWizard. The general observations showed that the use of
NewsWizard was much more intuitive than using the existing system. Most of the
journalists confirmed that in the future they would rather send articles from location
instead of going back to their desk if they could use the NewsWizard application.

4.2 Mobile Game for Children

A second case study concerns the development of a prototype for a mobile game, and
was carried out in collaboration with local cultural and tourist organizations. The goal
of this game for children is to make educational excursions more interesting and in-
formative.

Since a new system had to be developed in this case study, it was impossible to ex-
amine manuals and existing functionality. Mainly results from a user and task analysis
could contribute to the structured interaction analysis. During the user and task analy-
sis school groups were observed and interviewed while they were visiting museums
and zoos. It turns out that the addressed target users prefer being guided throughout
the visit in a narrative style, based on a story they can identify themselves with. After
several brainstorm sessions, the multi-disciplinary team including a graphic designer
and representatives of cultural and tourist organisations, came up with two game con-
cepts for a PDA application (Fig. 3 II.a, tool: word processor and PDF viewer). The
goal of one game is to save the trees in a nature resort, while the other game chal-
lenges children visiting a mine museum to help a mine worker to have a safe working
day. Scenarios ensured that all team members had the same understanding of the
game to be designed (tool: word processor and PDF viewer).

The game scenarios proved to be very useful to structure the user tasks and to cre-
ate a task model using the CTT notation (Fig. 3 II.b, tool: CTTE). Even though both
games are totally different, the same user interface components would be necessary.
This resulted in the decision to create a general framework containing the application
logic for both games.

Besides the task model, other HCI engineering models were created to present the
relation between the user interface and the application logic (Fig. 3 II.b, tool: drawing
tool). The application model ensured the application logic would be suitable for both
games. The system interaction model, based on the user task and application model
gives an overview of the flow of actions carried out by the system and the user. The
abstract presentation model, is based on the preceding models and represents the user
interface components, which can be used in a Canonical Abstract Prototype (CAP)
[10]. This CAP (Fig. 5, tool: CanonSketch) is a first graphical representation of the
functional parts of the user interface, independent of the content or the story that
would be used in the game. During the verification of the models, the scenarios were
used to ensure the models did meet the requirements of the game. After the computer
scientists created these models, the task was handed over to the graphic designer. He
translated the CAPs into some low-fidelity prototypes, which evolved into a design of

 Multi-disciplinary User-Centred Software Engineering Process Framework 161

Fig. 5. Three levels of prototypes for one specific screen. From left to right: a Canonical Ab-
stract prototype, a low-fidelity prototype and a high-fidelity prototype.

the prototypes for both games (Fig. 5, tool: paint program) after adding layout and
style information.

In order to get some early feedback of the end-users the prototypes were interac-
tively tested in a lab environment with materials similar to what is being used in par-
ticipatory approaches such as PICTIVE [19] (Fig. 3 II.d). The tests showed children
were amused by the game, but revealed problems concerning the size and behaviour
of buttons and the content.

Based on the test results, the design of the user interface was adjusted (tool: anima-
tion tool), while the models of the structured interaction analysis were used for the
development of the application logic of the game (tool: advance programming tool).
The resulting high-fidelity prototypes were evaluated by children in a nature resort
and a mine museum. During these field tests few user interface problems were de-
tected, so we may conclude that the model-based approach, and the evaluation in
early stages influenced the high-fidelity prototype in a beneficial way.

5 Lessons Learned

The case studies presented in section 4 were carried out using MuiCSer processes. In
the NewsWizard case a MuiCSer process was used for the redesign of an existing
system, while the second case study concerned the design of a new system. In both
case studies we experienced that it was hard to structure the information to get a com-
plete overview of the user needs. Since the usage of personas and scenarios implies
partially structured narrative information, it was necessary to transform the informa-
tion into some task models. These task models made it possible to abstract the most
important goals of the future prototype. By doing so, some information contained in
the personas and scenarios could be overlooked. Therefore, the task models were
evaluated during meetings with the computer scientists and team members with
other roles.

By carrying out different case studies we had the opportunity to fine-tune the ap-
proach in our multi-disciplinary team. In the NewsWizard case study it became clear

162 M. Haesen et al.

that task models were understandable for all team members and thus could be evalu-
ated during meetings. On the other hand computer scientists experienced that the
information of task models was insufficient for the development of the high-fidelity
prototypes. During the structured interaction analysis and prototyping of the mobile
game, models presenting the links between the user interface and the application logic
were helpful to get more insight into the functional requirements. Furthermore, these
models evolved gradually into a first graphical representation, the CAP, which was
also presented to the graphic designer.

The low-fidelity prototypes of both case studies were created by putting together
the artefacts of earlier stages in MuiCSer. The design of the first prototypes was dis-
cussed and evaluated during meetings attended by the multidisciplinary team.

End-users were asked to participate in the evaluation of high-fidelity prototypes.
Our experience from other case studies learned us that field tests give more informa-
tion on the entire user experience. By evaluating a prototype in the natural environ-
ment of the end-user, a broader user experience is taken into account and context
dependent actions can be observed.

When comparing the processes shown in Fig. 3 we discover that both are in line
with the MuiCSer framework from the start where the user studies take place, until
the high-fidelity prototyping phase. Several artefacts were created as a result of the
process stages. This illustrates the fact that the MuiCSer framework suggests some
models and artefacts, but that the design team decides about the particular results for
the customized process at hand. All artefacts proved useful to convert artefacts in the
next phase. The conversion of these artefacts required some human intervention that
is difficult or impossible to automate.

The creation, evaluation, verification and validation of the artefacts, was carried
out using several tools. The computer scientists and designers used CTTE, Canon-
Sketch, drawing tools, animation tools and advance programming tools for the devel-
opment of HCI models and coded prototypes. Widespread tools such as pencil and
paper, a word processor and a PDF viewer were useful for the other artefacts as the
entire project team, including representatives of the participating companies, was
familiar with these common tools.

6 Ongoing and Future Work

The process framework introduced in this paper has been tested on software projects
of limited complexity and, by consequence, with a development team of limited size.
Although our tests did not include any larger software projects, customized processes
derived from this framework should be flexible enough to support the increased com-
plexity and team size, partly because parameters such as size of increments, number
of iterations, specific models and artefacts are decided about when instantiating the
process from the framework. Currently we are investigating how a process instanti-
ated by MuiCSer can be used to model and design adaptable user interfaces for het-
erogeneous environments [15].

One of the main advantages of the openness of the framework with respect to spe-
cific techniques is that different domain experts can use their own notations to create

 Multi-disciplinary User-Centred Software Engineering Process Framework 163

models which can relate to models of other domain experts, in order to obtain a com-
plete and usable interactive system with respect to the requirements. We are testing
this conceptual framework for processes supporting multi-disciplinary teams in
various application domains, requiring different experts to collaborate. Besides the
relationship with existing UCD processes, we will investigate how software engineer-
ing processes fit into our framework. These research activities, including application
of derived processes and generalization of existing processes for comparison, will
give rise to enhancements or extensions of the framework.

Central storage of models and artefacts as well as manual and system-guided tran-
sitions between these products turn out to be key factors for the efficiency of the
processes and acceptability by the design team. Therefore, the design and creation of
a flexible user interface management system (UIMS) that is able to use XML-based
user interface descriptions and models is an integral part of our current work [25]. In
order to support this UIMS we plan to gradually improve the relation between the
different types of artefacts. The combination of HCI models and UML models con-
tributes to a smooth integration of the user interface and application logic. Putting
forward the combination of models explicitly also prevents mismatches between the
functionality provided by the application logic and the functionality accessible
through the user interface.

7 Conclusions

In this paper we introduced MuiCSer, a novel process framework, practicing Multi-
disciplinary User-Centred Software engineering in such ways that methodologies used
by developers as well as the creativity of developers are included and a positive user
experience is more likely to be obtained. Each iteration of a MuiCSer process pro-
duces one or more prototypes to enhance the visibility of this process and to allow
continuous user involvement and evaluation. Through the case studies, we found the
explicit support for multi-disciplinary teams in our process framework one of the
strong points of our approach. The definition of the framework stimulates the use of
customized processes that pay explicit attention to consistency of design and devel-
opment artefacts throughout the different cycles of the process. Multi-disciplinarity
has been a focus in the current instantiations of the MuiCSer framework and will get
additional attention in future research activities in this area. Extending and fine tuning
the framework by deriving new and existing processes, will make it a better reference
for process comparison and evaluation. Together with the user-interface management
system being developed, this will encourage systematic studies of requirements for
supporting tools for UCSE processes.

Acknowledgments. Part of the research at EDM is funded by the ERDF (European
Regional Development Fund) and the Flemish Government. The VIP-lab project (4-
BMG-II-2=37), is financed by the “Interreg Benelux-Middengebied” authorities and
co-financed by Province of Limburg (B), Province of Limburg (NL), Ministry of
Economic Affairs (NL) and Ministry of Flemish Government/Economic Affairs (B).

164 M. Haesen et al.

The MuiCSer Process Framework is also based on our experiences in IWT projects
Participate (with Alcatel-Lucent) and AMASS++ (IWT 060051).

References

1 Arnowitz, J., Arent, M., Berger, N.: Effective Prototyping for Software Makers. The Mor-
gan Kaufmann Series in Interactive Technologies. Morgan Kaufmann Publishers Inc., San
Francisco (2006)

2 Brown, J., Graham, N., Wright, T.: The vista environment for the coevolutionary design of
user interfaces. In: Proc. CHI 1998, pp. 376–383. ACM Press, New York (1998)

3 Campos, P., Nunes, N.J.: Practitioner tools and workstyles for user-interface design. IEEE
Software 24(1), 73–80 (2007)

4 Chatty, S., Sire, S., Vinot, J., Lecoanet, P., Lemort, A., Mertz, C.: Revisiting visual inter-
face programming: creating GUI tools for designers and programmers. In: Proc. UIST
2004, pp. 267–276. ACM Press, New York (2004)

5 Clerckx, T., Luyten, K., Coninx, K.: The mapping problem back and forth: customizing dy-
namic models while preserving consistency. In: Task Models and Diagrams for User Inter-
face Design, pp. 33–42 (2004)

6 Coninx, K., Haesen, M., Bierhoff, J.: VIP-lab: A virtual lab for ICT experience prototyping.
In: Proc. Measuring Behavior 2005, pp. 585–586 (2005)

7 Coyette, A., Kieffer, S., Vanderdonckt, J.: Multi-fidelity prototyping of user interfaces. In:
Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS,
vol. 4662, pp. 150–164. Springer, Heidelberg (2007)

8 Holtzblatt, K., Burns Wendell, J., Wood, S.: Rapid Contextual Design. A How-To Guide to
Key Techniques for User-Centred Design. Morgan Kaufmann Publishers, San Francisco
(2005)

9 International Standards Organization: ISO 13407. Human Centred Design Process for In-
teractive Systems. Geneva, Swiss (1999)

10 Constantine, L.: Canonical abstract prototypes for abstract visual and interaction design. In:
Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844,
pp. 1–15. Springer, Heidelberg (2003)

11 Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley, Read-
ing (2003)

12 Lin, J., Landay, J.A.: Employing patterns and layers for early-stage design and prototyping
of cross-device user interfaces. In: Proc. CHI 2008 (April 2008)

13 Luyten, K., Meskens, J., Vermeulen, J., Coninx, K.: Meta-GUI-builders: Generating do-
main-specific interface builders for multi-device user interface creation. In: CHI 2008: ex-
tended abstracts on Human factors in computing systems. ACM Press, New York (2008)

14 Meskens, J., Vermeulen, J., Luyten, K., Coninx, K.: Gummy for multi-platform user inter-
face designs: Shape me, multiply me, fix me, use me. In: Proc. AVI 2008 (2008)

15 Meskens, J., Haesen, M., Luyten, K., Coninx, K.: User-Centered Adaptation of User Inter-
faces for Heterogeneous Environments. In: Advances in Semantic Media Adaptation and
Personalisation. CRC Press Edited Book, Boca Raton (2008)

16 Michotte, B., Vanderdonckt, J.: A multi-target user interface builder based on UsiXML.
In: Proc. ICAS 2008. IEEE Computer Society Press, Los Alamitos (2008)

17 Mori, G., Paternò, F., Santoro, C.: CTTE: support for developing and analyzing task models
for interactive system design. IEEE Transactions on Software Engineering 28(8), 797–813
(2002)

 Multi-disciplinary User-Centred Software Engineering Process Framework 165

18 Mori, G., Paternò, S.C.: Design and development of multidevice user interfaces through
multiple logical descriptions. IEEE Transactions on Software Engineering 30(8), 507–520
(2004)

19 Muller, M.J.: Pictive – an exploration in participatory design. In: Proc. CHI 1991, pp. 225–
231. ACM Press, New York (1991)

20 Nobrega, L., Nunes, N.J., Coelho, H.: Mapping ConcurTaskTrees into UML 2. In: Gilroy,
S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 237–248. Springer, Hei-
delberg (2006)

21 Nunes, N.J., e Cunha, J.F.: Towards a UML profile for interaction design: the wisdom ap-
proach. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 101–116.
Springer, Heidelberg (2000)

22 Pruitt, J., Adlin, T.: The Persona Lifecycle: Keeping People in Mind Throughout Product
Design. Morgan Kaufmann, San Francisco (2006)

23 Redmond-Pyle, D., Moore, A.: Graphical User Interface Design and Evaluation. Prentice
Hall, London (1995)

24 Van den Bergh, J., Coninx, K.: Towards Modeling Context-Sensitive Interactive Applica-
tions: the Context-Sensitive User Interface Profile (CUP). In: Proc. SoftVis 2005, pp. 87–
94. ACM Press, New York (2005)

25 Van den Bergh, J., Haesen, M., Luyten, K., Coninx, K., Notelaers, S.: Toward Multi-
disciplinary Model-Based (Re)Design of Sustainable User Interfaces. In: Graham, T.C.N.,
Palanque, P. (eds.) DSV-IS 2008. LNCS, vol. 5136, pp. 161–166. Springer, Heidelberg
(2008)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 166–180, 2008.
© IFIP International Federation for Information Processing 2008

A Fluid Flow Approach to Usability Analysis
of Multi-user Systems

Mieke Massink1, Diego Latella1, Maurice H. ter Beek1,
Michael D. Harrison2, and Michele Loreti3

1 CNR - ISTI, Pisa, Italy
{massink,latella,terbeek}@isti.cnr.it

2 School of Computing Science, Newcastle University, UK
Michael.Harrison@ncl.ac.uk

3 Universita' di Firenze, Dip. di Sistemi e Informatica, Italy
loreti@dsi.unifi.it

Abstract. The analysis of usability aspects of multi-user systems, such as co-
operative work systems and pervasive systems, pose particular problems be-
cause group behavior of their users may have considerable impact on usability.
Model-based analysis of such features leads to state-space explosion because of
the sheer number of entities to be modeled when automatic techniques such as
model checking are used. In this paper we explore the use of a recently
proposed scalable model-based technique based on solving sets of Ordinary
Differential Equations (ODEs). Starting from a formal model specified using
the Performance Evaluation Process Algebra (PEPA), we show how different
groupware usage patterns may be modeled and analyzed using this approach.
We illustrate how the approach can explore different design options and their
impact on group behavior by comparing file access policies in the context of a
groupware application.

Keywords: Formal Methods, Model-based usability analysis, Performance
Evaluation Process Algebra, Ordinary Differential Equations, Groupware
Systems.

1 Introduction

Tools for usability analysis in relation to one (or at most a few) users are by now
relatively mature. However, to date, systematic techniques for analyzing systems,
where there are many users and where the collective behavior of these users has an
influence on the usability of the system, are currently undeveloped. Such techniques
are becoming more necessary as the variety of co-operative work systems, multi-
player games, shared virtual spaces and pervasive systems grows.

Collective behavior may have an impact on the usability of a system as it is per-
ceived by an individual. The effect of the behavior of other users may be to change
the individual’s user interaction. Consider for example a groupware system that offers
exclusive access to files by allowing users to get and lock files when files are avail-
able. If the lock is already given to another user, and the file is currently in use, then

 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 167

the user will not be able to access the file until the other user has finished with it. In
such situations users devise strategies to ensure that they will have the editing rights
that they need when they need them. Alternatively they will schedule their work so
that there is always something else that they can do in such circumstances. For exam-
ple, a strategy that might be feasible in this example would be to get hold of the file
some time before it is needed. This greedy strategy would be effective for the individ-
ual, making it possible for them to carry out their work effectively, but it is not likely
to be effective for the whole collaborative activity.

Not only will the individual behavior of a user be affected by changes to the sys-
tem through its collective use, but the system can also have an effect on the collective
behavior of the users. Indeed a system may be designed to achieve precisely this,
consider for example a dynamic signage system such as [13] designed to facilitate
evacuation of a building. The displays showing where people should go could be
designed to change depending on volumes of people within different spaces in the
building at any given moment. The displays will together modify the behavior of
those in the spaces and thereby, if effective, achieve the most efficient and calm
movement of people.

Other factors may affect the usability of these multi-user systems. Usage patterns
in relation to technology may also be induced by external factors. For example, in a
collaborative design environment it is often the case that the collaboration takes place
in a way that reflects project-oriented organization of the work. Projects tend to have
different phases: creative phases in which artifacts are developed, which may require
longer periods of file creation and modification; fine-tuning phases characterized by
frequent but short accesses to a number of critical files. These different phases may
lead to a shift between typical usage patterns of the system with a potential impact on
its usability characteristics.

Techniques are required that will enable an understanding of both qualitative and
quantitative performance aspects of collective usability. In practice few studies have
addressed collective behavior. Empirical studies either focus on individual interac-
tions within a system, for example exploring how a group of individuals use flight
strips in air traffic management. These studies tend to use ethnographic techniques to
provide a rich contextualized account of behavior (see [12] for example) or more
anecdotal accounts of social behavior (see [16] in relation to social behavior using the
Flickr photo-sharing service). On the other hand detailed statistical analyses of sys-
tems have been used to detect biases in their individual use (see for example [21] in
relation to a mammography system). These studies are important in exploring patterns
of behavior that arise from use of the system. They are time and resource intensive
and require a live system. The question of the paper is how to analyze collective be-
havior of users in relation to a system prior to fielding the system.

While formal models have been developed and explored that are relevant to model-
ing the interaction between an individual user and device in context (see e.g., [8,9])
and general behavior of users have been captured through normative task models (see
e.g. [10,20]) the impact of modeling collective behaviors within interactive systems
have not been studied. This issue becomes particularly important in ubiquitous sys-
tems, providing smart environments in which many users are immersed and which
can have an important impact on the collective behavior of those involved. This pa-
per focuses on the role that modeling approaches can take in enabling the analysis of

168 M. Massink et al.

collective behavior during the early stages of design. The aim is that these techniques
should be capable of providing a basis for usability evaluation in the face of different
user strategies, when in different phases of collaboration and given different technol-
ogy designs. A groupware system similar to the one used already for illustration,
provides an example of the use of the particular technique.

The fundamental problem with formal modeling in relation to analyses of collec-
tive behaviors is how to deal with the state explosion that arises through attempts to
model multiple instances of processes required to define the collective behavior. The
paper explores a recently proposed scalable model-based technique, Fluid Flow
Analysis [15]. This technique supports the analysis of many replicated entities with
autonomous behavior that collaborate by means of forms of synchronization. It builds
upon a process-algebraic approach and adds techniques for quantitative analyses to
those for behavioral analysis. The technique has been successfully applied in areas
such as large-scale Web Services [11,15], Service-Oriented Computing [23] and Grid
applications [5,6], but also in Systems Biology [7].

The technique consists in deriving automatically a set of Ordinary Differential
Equations (ODEs) from a specification defined using Performance Evaluation Process
Algebra (PEPA) [14]. The solution of the set of ODEs, by means of standard numeri-
cal techniques, gives insight into the dynamic change over time of aggregations of
components that are in particular states. The approach abstracts away from the iden-
tity of the individual components. The derivation of sets of ODEs from PEPA speci-
fications, the algorithms to solve ODE equations and the generation of the numerical
results are supported by the PEPA workbench [22].

The problem addressed in the paper is to explore different user strategies and
groupware designs for a simplified version of a groupware system called thinkteam.
Two different file access policies are analyzed and compared. thinkteam is part of the
Product Lifecycle Management system of think3. The Fluid Flow technique can be
used in this situation because the system being analyzed involves many replicated
components that can be abstracted to relatively few states. The approach can be seen
as complementary with model checking in general and stochastic model checking in
particular. Stochastic model checking techniques have already been applied to the
same example in earlier work [1,2,3,4]. While this approach allows a richer analysis
of specific properties of smaller sets of processes, Fluid Flow allows broader analysis
of larger aggregations.

The paper introduces PEPA in Section 2 and briefly explains the Fluid Flow in-
terpretation of PEPA models. In Section 3 the thinkteam example is introduced, fol-
lowed in Section 4 by a specification of the example. Section 5 describes the analysis
and section 6 outlines briefly future directions.

2 PEPA: A Process Algebra for Performance Evaluation

In PEPA, systems can be described as interactions of components that may engage in
activities in much the same way as in other process algebras. Components reflect the
behavior of relevant parts of the system, while activities capture the actions that the
components perform. A component may itself be composed of components. The
specification of a PEPA activity consists of a pair (action type, rate) in which action

 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 169

type denotes the type of the action, while rate characterizes the negative exponential
distribution of the activity duration. A positive real-valued random variable X is ex-
ponentially distributed with rate r if the probability of X being at most t, i.e. Prob(X ≤
t), is 1-e-r×t if t ≥ 0 and is 0 otherwise, where t is a real number. The expected value of
X is 1/r. Exponentially distributed random variables are more tractable because they
have a memoryless property, i.e. Prob((X > t+t')|(X > t)) = Prob(X > t) for t, t' ≥ 0.
Exponential distributions are widely used in the modeling of the dependability and
performance of real systems where they form the basis for Continuous Time Markov
Chains (CTMC), see e.g. [21]. Furthermore, proper compositions of exponential dis-
tributions can be used for the approximation of any non-negative distribution. The
PEPA expressions used in this article have the following syntax1:

P ::= (a, r).P | P + P | P ||{L} P | A

Behavioral expressions are constructed through prefixing. Component (a, r).P carries
out activity (a, r), with action type a and duration Δt determined by rate r. The aver-
age duration is given by 1/r. It is defined that Δt is an exponentially distributed ran-
dom variable with rate r. After performing the activity, the component behaves as P.
Component P + Q models a system that may behave either as P or as Q, representing
a race condition between components. The co-operation operator P ||{L} Q defines the
set of action types L on which components P and Q must synchronize (or co-operate);
both components proceed independently with any activity not occurring in L. The
expected duration of a co-operation of activities a belonging to L is a function of the
expected durations of the corresponding activities in the components. Typically, it
corresponds to the longest one (see [15] for definition of PEPA). An important special
case is the situation where one component is passive (a rate Τ indicates this) in rela-
tion to another component. Here the total rate is determined by that of the active com-
ponent only. The behavior of process variable A is that of P, provided that a defining
equation A=P is available for A. We introduce two shorthand notations. If the set L is
empty P ||{L} Q is written as the parallel composition of P and Q: P|Q. If there are n
copies of P in parallel co-operating with m parallel copies of Q this is written as:
P[n] ||{L} Q[m]. We will present PEPA specifications as stochastic state transition
diagrams throughout the paper. Full PEPA specifications for the same system can be
found in the full version of the paper [19].

One of the advantages of a formal, high-level specification language with a fully
formal semantics is that it lends itself to the application of different analysis and
evaluation techniques while preserving its semantics. For example, PEPA specifica-
tions can be analyzed by means of a stochastic model checker, such as PRISM [18],
and it can also be used for simulation. As already mentioned PEPA specifications can
be translated into sets of Ordinary Differential Equations (ODEs) [15]. A very brief
summary of the approach follows; more details can be found in [19,15]. Suppose a
PEPA model S1[n1] ||L1 S2[n2] ||L2 ... ||Lk-1 Sk[nk] is given, which is composed of
n1+n2+ ...+nk sequential components. Each component Sj is defined by means of a

1 For technical reasons there are some restrictions on the nesting of parallel processes in the

dialect of PEPA suitable for the translation to ODEs. For the sake of simplicity, we refrain
from discussing the issue here and refer to [9] for details. The symbol for co-operation in
PEPA is different from the one used in the present paper.

170 M. Massink et al.

PEPA defining equation Sj = ... Sjr ... Sjv ... Sjw, where Sj, Sjr, Sjv ... Sjw are the relevant
states of Sj; all such states are themselves defined by means of equations. The solution
of the set of ODEs associated with the PEPA model is a set of continuous functions.
In particular, there is one function S(t) for each state S occurring in the original speci-
fication and, for each time instant t, S(t) yields a continuous approximation of the
total number of components which are in state S at time t, given the initial conditions
S1(0)= n1, S2(0)= n2, ... ,Sk(0)=nk. Notice that the fact that the values n1, n2, ..., nk of
the number of components in the system (at the initial configuration) can be very high,
e.g. in the order of millions, makes the approach intrinsically scalable. In the experi-
ments described in Section 5, results are compared with those obtained via discrete
event simulation and are found to be comparable.

3 The Thinkteam Groupware

Thinkteam (http://www.think3.com/) is think3's Product Data Management (PDM)
application. It is designed to deal with the document management needs of design
processes in the manufacturing industry. Controlled storage and retrieval of docu-
ments in PDM applications is called vaulting, the vault being a file-system-like re-
pository. The system is designed to be a secure and controlled storage environment, in
which vaulting prevents inconsistent changes to the document base while still allow-
ing maximal access compatible with business rules. A standard set of operations is
supported (see Table 1).

Access to files (via a checkOut) is based on the retrial principle: no queue or res-
ervation system exists to handle the requests for editing rights. thinkteam typically
handles some 100,000 files for 20-100 users. A user rarely checks out more than 10
files a day, but can keep a file checked out for periods from a few minutes to a few
days. Log-file analysis of typical use indicated that only a small subset of the files are
accessed regularly for editing. Files are typically shared by several users ranging from
2 to 5 with peaks of up to 17.

Table 1. Thinkteam user operations

Operation Effect
get extract a read-only copy of a file from the Vault
import insert an external file into the Vault
checkout extract a copy of a file from the Vault with the intent of modifying it

(exclusive, i.e. only one checkOut at a time is possible)
unCheckOut cancel the effects of the preceding checkOut
checkIn replace an edited file in the Vault (the file must previously have been

checked out)
checkInOut replace an edited file in the Vault, while at the same time retaining it

as checked out

To maximize concurrency, a checkOut in thinkteam creates an exclusive lock for
write access. An automatic solution of the write access conflict is not easy, as it is
critically related to the type, nature, and scope of the changes performed on the file.

 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 171

Moreover, standard but harsh solutions - like maintaining a dependency relation be-
tween files and using it to simply lock all files depending on the file being checked
out - are out of the question for think3, as they would cause these files to be unavail-
able for unacceptably long periods. In thinkteam, the solution is to leave it to the users
to resolve such conflicts. However, a publish/subscribe notification service would
provide the means to supply the Clients with adequate information by (1) informing
Clients checking out a file of existing outstanding copies and (2) notifying the copy
holders upon checkOut and checkIn of the file. [3] adds a lightweight and easy-to-use
publish/subscribe notification service to thinkteam and verifies several correctness
properties such as concurrency control, awareness, and denial of service. Denial-of-
service is possible in this system in that one of the users can never get a turn to per-
form a checkOut. This may happen because the system is continuously kept busy by
other users. Access to files is based on retrial. The usability aspects of the two file
access policies need to be studied under different assumptions about how the group is
using the system. In [1] two such usability aspects are studied; (1) how often, on aver-
age, users have to express their requests before they are satisfied and (2) under which
system conditions (number of users, file editing time, etc.) such a reservation system
would really improve usability. In that work a stochastic model-checking approach is
used and a limited model with up to ten users competing for one file is analyzed. In
this paper we investigate a complementary analysis based on the Fluid Flow approach
were we study models with a much larger number of users and files.

4 Modeling File Access Policies

A typical thinkteam user makes requests for edit rights on files using checkOut opera-
tions. After editing, the file is inserted back into the vault by a checkIn operation.
Furthermore, a typical file manager is ready to receive a request from a Client and
grants this request. It then locks the file for other Clients until it is returned to the
vault. Two types of file manager will first be considered. The first supports retrial
while the second supports a file reservation system based on a finite queue. It is as-
sumed that the file manager is always able to provide a timely response to the Client
on the availability of the file, be it positive or negative. This is modeled using passive
rates as explained in Section 2.

4.1 The Retry Policy

Figure 1 describes models of a Client and a FileManager supporting the Retry policy.
This particular model will be called the “liberal retrial model” in what follows. PEPA
specifications corresponding to all the stochastic state transition diagrams presented in
this paper can be found in [19]. The Client initially tries to checkOut a file. This can
be successful (cos) or fail (cof). The rate a denotes the access rate and characterizes
the time that passes between the last checkIn of a file and the next access to a file. In
other words, it represents the time that a Client is busy with activities other than re-
questing edit rights for a file and modifying it. If the Client has successfully received
edit rights to the file, she works on it for a while and checks the file in. The time in-
volved in this activity is modelled by the rate w. If the edit rights are not granted, the

172 M. Massink et al.

Client tries again repeatedly with time intervals characterised by rate r, the retry rate.
The FileManager initially is in a state in which the file is free and can accept a check-
Out request from a Client. It then moves to a state representing that the file is now
locked (FMbusy) in which further Clients' requests result in a failed checkOut (cof)
until the file is checked in (ci).

Fig. 1. From left to right: Stochastic Automata of Client and FileManager components

All activities of the FileManager have a passive rate (T), they adapt to any rate in-
duced by the Clients. The model abstracts from the identity of the Clients by not
keeping track of which Client exactly is requesting which file. The model of the Cli-
ent behavior does not require that a Client's retry activity is aiming at obtaining the
same file. In fact, it models Clients that try to obtain whatever file they want every
time they are making a request. This can be a request for the same file or for any other
file, free or occupied. In this sense the model differs from the one we presented in [1],
where the fact that there was only one file implied that all three Clients are trying to
get the same file. This abstraction can be achieved without loss of generality given the
volumes of processes. A composed model with 90 Clients competing for 30 files can
now be expressed using the PEPA co-operation operator: Client[90] ||{cos,ci,cof}

FMfree[30].
A modified specification of the Retry model (the waiting retry model) is given in

Figure 2. Here when a checkOut attempt fails (cof), the Client waits on average an
amount of time equal to the length of a typical editing session (1/w) before trying
again. This is modeled by the pair of states RetryFail and Retry together and related
transitions. This model approximates a situation in which Clients keep on trying to
obtain a particular file because, on average, they have to wait for such a file at least
for the duration of one editing session. It could be argued that a Client may be ‘lucky’

Fig. 2. From left to right: Stochastic Automata of Client and FileManager components

 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 173

and wait less time when the Client that is currently editing has almost finished. Be-
cause the exponential distributions are memoryless the same rate w modeling the
working time also models the remaining working time. As in the liberal Retry model
we can express the composed model with 90 Clients and 30 FileManagers as Cli-
ent[90] ||{cos,ci,cof} FMfree[30].

4.2 The Waiting-List Policy

Figure 3 models the Waiting-list policy. The model of the FileManager supporting
this policy is given in Figure 4. The Client may initially achieve: (1) a successful
checkOut of the requested file (cos), (2) an unsuccessful checkOut, but placement in
the waiting list (cof), or (3) a complete failure because the waiting list for the file is
full (qf). In the first case, the Client edits the file and checks it in as before. In the
second case, the Client waits until a notification arrives saying that it is the Client's
turn to edit the file (trn). In the third case the Client has to try again to get the file or
to be put on the waiting list. The model of the FileManager that supports the Waiting-
list policy includes a queue. In this specific case one Client can be editing the file and
at most two other Clients may be in the queue. Initially the file is free and a checkOut
request is successful (cos). If a further request arrives the request is placed in the
waiting list (cof) modeled by state FMbusyW1. If yet a further request arrives before
the file is checked in it is placed in the list as well, modeled by state FMfullW2, de-
noting that the list is now full and two Clients are waiting for write access. Any fur-
ther requests are answered with a ‘queue full’ message (qf).

Fig. 3. Client component

When the file is checked in while the FileManager is in state FMfullW2, it moves
to state FMfullW2bis from which a notification is sent to the next Client that was
waiting for the file (trn). We know that such a Client exists because Clients that re-
ceive a (cof) are waiting for such a notification before they can do other things. The
model Client[90] ||{cos,ci,cof,qf,trn} FMfree[30] now takes the new definitions for Client
and FMfree.

This model is not concerned with exactly which Client gets the notification. In fact,
when abstracting from identity, any Client that is waiting for a notification will do,
because on average for every Client that in theory would have received the notifica-
tion ‘before its turn’ there is an equivalent one that receives it later than would be

174 M. Massink et al.

Fig. 4. The FileManager

preferred. In daily life Clients do care about such a random assignment of turns, but
note that for the purpose of the analysis we only require that Clients wait until they
receive a notification. We can correctly abstract from the identity of the Clients (and
files) because we are only interested in the number of Clients that are in a certain
state. This provides an indication of the performance of the overall system. To make
this clearer, consider the following example. If ten people stand in a queue, each with
their numbered ticket, the length of the queue is not influenced by two people ex-
changing their tickets (or their places). If we have two queues, their length is also not
influenced by the exchange of two people, one from each queue. In the case of our
model therefore we do not need to model in which queue the Client is. In this model
it is necessary to synchronize also on the actions denoting queue full (qf) and next
turn (trn).

5 Analysis of File Access Policies in Thinkteam

The models in Section 4 can be used to explore the advantages and disadvantages of
alternative strategies giving a perspective on the collective usability of these different
strategies. Analysis using the PRISM stochastic model checker with a limited number
of files and Clients is described in [1]. The specifications are also amenable to dis-
crete event simulation. In this section we present the results of the Fluid Flow analy-
sis. This analysis provides information about how many Clients are editing a file or
are waiting in a queue over time. These numbers depend on the typical usage patterns
of the system, which in their turn can be characterized by the values of the parameters
of the model. The following assumptions are made about usage patterns, that

 The average time between a checkIn and the next request is 2 hours (i.e. rate
a = 0.5)

 The system is used by 90 Clients that compete for 30 files.
 The retry rate r is 5×a
 Editing sessions of different average duration 1/w
 Each Client has at any moment at most one file checked out.

In addition in the case of the Waiting-list model we assume that there can be at most
one Client working on a file and that there can be at most two Clients in the queue
before it is full.

 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 175

5.1 Analysis of the Waiting-List Policy

Results show average durations of editing sessions of 4 hours (Figure 5(a)) and 5
minutes (Figure 5(b)). All other assumptions are invariant. The graphs show how an
initial situation of the Waiting-list model with 90 Clients and 30 free files evolves
over 20 hours. Each curve shows the evolution of the number of processes in each
state described in the specification of section 4. A number of observations can be
made about the number of Clients who are editing files, waiting in queues or busy
trying to get a file. In all cases stability occurs within an hour or two. We can see in
the longer sessions (Figure 5(a)):

1. A steep decrease in the number of Clients involved in other activities, drop-
ping from 90 initially to a stable 6.5

2. A steep decrease in the number of free files from 30 to almost zero (arising
for the fact that so many Clients are competing for files and are involved in
relatively long editing sessions)

3. The number of Clients spending their time waiting in some queue is rela-
tively high tending to approximately 52

4. The queues themselves are quite full, i.e. approximately 26 of the 30 queues
are full in the long run.

 (a) (b)

Fig. 5. ODE analysis of Waiting-list model, number of processes in each state with Clients
editing files for: (a) 4 hours on average; (b) 5 minutes on average

In the shorter sessions (Figure 5(b)): 10 files are actually being edited at any time
and the Clients are hardly wasting any time in the queues obtaining the files they
need. This situation may of course change rapidly when shorter editing times are
combined with much more frequent requests for files.

5.2 Analysis of the Retry Policy

The liberal Retry policy (Figure 6) shows at first sight a similar pattern to the Wait-
ing-list policy. In the case of long editing sessions of about 4 hours on average we
observe:

176 M. Massink et al.

1. A rapid decrease in the number of users performing other activities than try-
ing to get files and edit them

2. The available files are quickly occupied
3. Approximately 45 Clients are at any time busy (re)trying to obtain files
4. In editing sessions of 5 minutes there remains a considerable number of Cli-

ents (about 12) busy retrying to obtain files, compared with the Waiting-list
policy under the same circumstances in that model almost no Clients are
waiting in a queue.

5.3 Comparing the Usability of the Two File Access Policies

In summary the liberal Retry model and the Waiting-list model both tend toward a
stable situation in relation to the number of processes that are in certain states at any
moment. In Figure 7(a) we compare the usability of the liberal Retry model (LRM)
and the Waiting-list model (WLM) by showing the number of ‘free Clients’ (series
labelled by FinLRM and FinWLM respectively), the number of working Clients (se-
ries labelled by WinLRM and WinWLM respectively) and waiting or retrying Clients
(series labelled by RinLRM and WRinWLM respectively) after 20 hours of operation.

 (a) (b)

Fig. 6. ODE analyses for the liberal Retry policy for number of processes in each state editing
files for (a) 4 hours on average (b) 5 minutes on average

These numbers are shown under different assumptions on the average duration of
the edit sessions for both the liberal Retry model and the Waiting-list model. Note that
the average edit time ranges from 10 hours on average on the left, to 5 minutes on the
right of the figure. The liberal Retry model appears to outperform the Waiting-list
model when the duration of the edit time is more than approximately 20 minutes. This
is because there are more Clients waiting for a file or involved in retry in the Waiting-
list model than in the Retry model. The number of Clients working on a file is the
same when the edit time is more than one hour, and the files are in that case all
checked out. This result can be explained by the fact that in the liberal Retry model,
when many files are checked out, the Client can in every retry attempt have a possi-
bility to obtain a free file when available. In the Waiting-list model the Client is
forced to stay in a queue and wait until an occupied file is again available. The Retry

 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 177

model represents a strategy in which a Client is more free to dynamically adapt their
work to the situation.

The situation changes considerably, however, for average editing periods shorter
than approximately 20 minutes. We can observe then that there are fewer Clients
editing a file in the Retry model than in the Waiting-list model. In fact, in the Wait-
ing-list model for edit sessions of less than 20 minutes very few Clients need to wait
for a file, whereas a relatively large number of Clients are retrying in the Retry model.
This is due to the fact that Clients do not get notified about the fact that a file became
available and are wasting time in between consecutive retries. In the Waiting-list
model, the waiting Clients are immediately informed about the availability of the file
of interest. Figure 7(b) shows the results comparing the Waiting-Retry model (WRM)
with the Waiting-list model (WLM).

Fig. 7(a). Comparison of policies: liberal Retry vs. Waiting-list

The series shows the number of ‘free Clients’ (series labelled by FinWRM and
FinWLM respectively), the number of working Clients (series labelled by WinWRM
and WinWLM respectively) and waiting or retrying Clients (series labelled by
WRinWRM and WRinWLM respectively) after 20 hours of operation. We can ob-
serve that for edit sessions that last more than one hour the two policies have now a
more similar performance. The Waiting-Retry model still gives slightly better per-
formance than the Waiting-list model when looking at the Clients who are free or
busy retrying/waiting. This may be explained by the fact that we required that Clients
in the Waiting-Retry model wait only for the duration of one session whereas when
all files are occupied it is much more likely that Clients should wait for two editing
sessions. This is the case for the Waiting-list model. For editing sessions of less than
one hour, when not all files are continuously occupied, it is clear that the Waiting-
Retry model has worse usability performance than the Waiting-list policy in the sense
that Clients waste more time in retry activity than they would waiting in a queue in
the Waiting-list model. Again, this is due to the fact that Clients do not know how
long they should wait before attempting another checkOut. So, even if the file of

178 M. Massink et al.

Fig. 7(b). Comparison of policies: Waiting Retry vs. Waiting-list

interest is already available, Clients keep waiting before attempting a next checkOut
request. In the Waiting list policy instead, Clients are immediately notified about the
availability of the desired file, and therefore, on average, they are wasting less time.

6 Conclusions and Further Research

We have used the Performance Evaluation Process Algebra (PEPA) to develop com-
bined user and system models to investigate usability aspects of multi-user systems
with a large number of users. This has been achieved by solving sets of Ordinary
Differential Equations that are automatically derived from PEPA specifications. This
analysis allows for the evaluation of systems with a very high number of replicated,
independent components at the cost of abstracting from the identities of these compo-
nents. We have illustrated how the analysis technique can be used to inform design
choices for user interaction in multi-user systems where user behavior may directly
affect usability. Different usage patterns may influence performance aspects of
groupware systems that are directly relevant to its usability. We have shown how a
file access policy based on a retrial principle and one based on waiting lists can be
modeled and their effects on usability of the overall system can be compared for dif-
ferent assumptions on usage patterns. The ODE analysis results show that for usage
patterns where in the long run not all files are checked out, the Waiting-list policy
makes users waste less time in waiting/retry activities than the Retry policy would
under the same circumstances. Such a comparison was made by analyzing the number
of Clients that are involved in certain activities at any time. These activities corre-
spond to particular states in the respective models.

In this paper we explored some initial ideas for the application of the ODE tech-
nique to the analysis of usability aspects of multi-user systems. We think that the
results are encouraging and we plan to investigate their use also in more extended
case studies. In particular we are interested in using this technique to explore smart

 A Fluid Flow Approach to Usability Analysis of Multi-user Systems 179

spaces, and in particular how a ubiquitous system might affect the collective behavior
of users within the smart spaces. First considerations in the context of a dynamic
context sensitive guidance system can be found in [13].

Acknowledgments

This work has been partially funded by the Italian MIUR/FIRB project tocai.it, by the
EU project Resist/Faerus (IST-2006-026764), by the EU project SENSORIA (IST-
2005-016004), and by the Italian CNR/RSTL project XXL. think3, thinkteam and
thinkPLM are registered trademarks of think3, Inc.

References

1. ter Beek, M., Massink, M., Latella, D.: Towards Model Checking Stochastic Aspects of
the thinkteam User Interface. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS,
vol. 3941, pp. 39–50. Springer, Heidelberg (2006)

2. ter Beek, M., Massink, M., Latella, D., Gnesi, S.: Model Checking GroupwareProtocols.
In: Darses, F., Dieng, R., Simone, C., Zacklad, M. (eds.) Co-operative Systems Design-
Scenario-Based Design of Collaborative Systems. Frontiers in Artificial Intelligence and
Applications, vol. 107, pp. 79–194. IOS (2004)

3. ter Beek, M., Massink, M., Latella, D., Gnesi, S., Forghieri, A., Sebastianis, M.: Model
Checking Publish/Subscribe Notification for thinkteam. In: Arenas, A., Bicarregui, J.,
Butterfield, A. (eds.) Proceedings of FMICS 2004. Electronic Notes in Theoretical Com-
puter Science, vol. 133, pp. 275–294 (2005)

4. ter Beek, M., Massink, M., Latella, D., Gnesi, S., Forghieri, A., Sebastianis, M.: A Case
Study on the Automated Verification of Groupware Protocols. In: Heitmeyer, C., Pohl, K.
(eds.) ICSE 2005, pp. 596–603. ACM, New York (2005)

5. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Scheduling Skeleton-Based Grid Applica-
tions Using PEPA and NWS Source. The Computer Journal 48(3), 369–378 (2005)

6. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Enhancing the effective utilisation of grid
clusters by exploiting on-line performability analysis. In: Proceedings of CCGRID 2005,
pp. 317–324. IEEE Computer Society Press, Los Alamitos (2005)

7. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra
models of signalling pathways. In: Proceedings of CMSB 2005, pp. 204–215 (2005)

8. Campos, J., Harrison, M.: Model checking interactor specifications. Automated Software
Engineering 8, 275–310 (2001)

9. Campos, J., Harrison, M.: Considering context and users in interactive systems analysis.
In: van de Veer, G., Palanque, P., Wesson, J. (eds.) Proceedings of EIS 2007, Lecture
Notes in Computer Science. LNCS. Springer, Heidelberg (to appear, 2007)

10. Fields, R.: Analysis of erroneous actions in the design of critical systems. PhD thesis, De-
partment of Computer Science, University of York (2001)

11. Gilmore, S., Tribastone, M.: Evaluating the Scalability of a Web Service-Based Distrib-
uted e-Learning and Course Management System. In: Bravetti, M., Núñez, M., Zavattaro,
G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer, Heidelberg (2006)

12. Harper, R.H.R.: The organization in ethnography – a discussion of ethnographic fieldwork
programs in CSCW. Computer Supported Co-operative Work 9(2), 239–264 (2000)

180 M. Massink et al.

13. Harrison, M.D., Kray, C., Campos, J.C.: Exploring an option space to engineer a ubiqui-
tous computing system. Electronic Notes in Theoretical Computer Science, vol. 208C, pp.
41–55 (2008)

14. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

15. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of QEST 2005,
pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

16. Kindberg, T., Spasojevic, R., Fleck, R., Sellen, A.: The ubiquitous camera: an in-depth
study of camera phone use. IEEE Pervasive Computing 4(2), 42–50 (2005)

17. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, Boca Raton
(1995)

18. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with
PRISM: A hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 52–66. Springer, Heidelberg (2002)

19. Massink, M., Latella, D., ter Beek, M., Harrison, M., Loreti, M.: A Fluid Flow Approach
to Usability Analysis of Multi-user Systems-Full version. ISTI Technical Report (to ap-
pear), http://www.isti.cnr.it/People/M.Massink/t3ode.pdf

20. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Proceedings
of INTERACT 1997, pp. 362–369. Chapman & Hall, Boca Raton (1997)

21. Strigini, L., Povyakalo, A., Alberdi, E.: Human machine diversity in the use of computer-
ized advisory systems: a case study. In: International Conference on Dependable Systems
and Networks (DSN 2003), pp. 249–258 (2003)

22. Tribastone, M.: The PEPA Plug-in Project. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of QEST 2007, pp. 53–54. IEEE Computer Society Press,
Los Alamitos (2007)

23. Wirsing, M., Clark, A., Gilmore, S., Holzl, M., Knapp, A., Koch, N., Schroeder, A.: Se-
mantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Hei-
delberg (2006)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 181–196, 2008.
© IFIP International Federation for Information Processing 2008

Task-Driven Plasticity: One Step Forward with UbiDraw

Jean Vanderdonckt and Juan Manuel Gonzalez Calleros

Belgian Laboratory of Computer-Human Interaction (BCHI)

Louvain School of Management (LSM), Université catholique de Louvain
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

jean.vanderdonckt@uclouvain.be,
juan.gonzalez@student.uclouvain.be

Abstract. Task-driven plasticity refers to as the capability of a user interface to
exhibit plasticity driven by the user’s task, i.e. the capability of a user interface
to adapt itself to various contexts of use while preserving some predefined us-
ability properties by performing adaptivity based on some task parameters such
as complexity, frequency, and criticality. The predefined usability property con-
sidered in task-driven plasticity consists of maximizing the observability of user
commands in a system-initiated way driven by the ranking of different tasks
and sub-tasks. In order to illustrate this concept, we developed UbiDraw, a vec-
torial hand drawing application that adapts its user interface by displaying, un-
displaying, resizing, and relocating tool bars and icons according to the current
user’s task, the task frequency, or the user’s preference for some task. This ap-
plication is built on top of a context watcher and a set of ubiquitous widgets.
The context watchers probes the context of use by monitoring how the user is
carrying out her current tasks (e.g., task preference, task frequency) whose defi-
nitions are given in a run-time task model. The context watcher sends this
information to the ubiquitous widgets so as to support task-driven plasticity.

Keywords: adaptation of user interface, context-aware adaptation, plasticity of
user interface, task-based design, task-driven plasticity, user interface descrip-
tion language.

1 Introduction and Motivations

The rise of ubiquitous computing [20] poses significant challenges for designing User
Interfaces (UIs) that are adapted to new contexts of use [3,6,20,22]. In conventional
interactive systems, the context of use is both limited (e.g., in terms of screen resolu-
tion, available input devices) and known (e.g., a person sitting in front of a PC). As
computing platforms become more embedded in our daily environment or carried
with us, the surrounding world essentially becomes an interface to virtually any type
of interactive system. This implies some major changes in the design of these UIs.
Porting the UI of specific systems (e.g., a route planning system) or of traditional,
popular applications (e.g., a word processing system) to new computing platforms al-
ways faces the challenge of designing a UI that is compatible with the constraints im-
posed by the new computing platform. For instance, porting the UI of a vectorial

182 J. Vanderdonckt and J.M. Gonzalez Calleros

drawing system from a PC to a PocketPC not only poses constraints of the screen
resolution but also introduces alternative modalities of interaction for which the initial
UI was not designed initially. For this purpose, many different strategies have been
adopted that affect the initial UI design or not.

Techniques that do not affect the initial design include simple porting (when the
initial UI is merely reproduced in contents and shapes to the new platform without
any change) or zooming (when zoom in/out is applied to the initial UI to in-
crease/decrease the size of a UI portion currently in use according to a focus of inter-
est). While these techniques preserve the consistency between the different versions,
the simple porting may dramatically reduce the available screen real estate while the
zooming may induce many operations related to the zoom manipulation. Keeping a
high number of menu options displayed continuously also maintains a high level of
uncertainty on the UI and a high decision time.

The Hick-Hyman Law [16] specifies that this decision time is proportional to the
logarithm of equally distributed options. This may suggest that a single screen with
more options is more efficient for target selection than a series of screens with less
options. But in this case, the screen density may increase, thus impacting the time for
searching an item on the screen. For instance, Fig. 1 shows how a traditional UI for a
PC-based drawing application is almost entirely reproduced for a PocketPC. Only the
bottom left portion of the drawing UI displays some more options depending on the
function selected. The rest of the UI remains constant over time.

Fig. 1. Simple drawing application on a Pocket PC (from WinCEPaint - http://
www.abisoft.spb.ru/products/cepaint.html)

Techniques that affect the initial design statically may keep the same modality or
not when adapting the initial UI. For instance, the UI components can be restructured
into tabbed windows gathering functions that are related in principle to the same task.
The quality of this gathering highly depends on the quality of the task analysis that
has been conducted before. As another example, some Pocket PCs are equipped with

 Task-Driven Plasticity: One Step Forward with UbiDraw 183

physical buttons that can be reassigned to other functions depending on the system
running. While this may reduce the functions presented on screen, the assignment
may confuse the end user as it is neither systematic nor consistent throughout several
interactive systems. In addition, some icons are drawn on these physical buttons, thus
making them appropriate for one task (e.g., a particular view for a calendar), but ir-
relevant for another (e.g., what does a ”Month view” mean for a drawing system?).
Similarly, information that was previously assigned to a graphical widget can be sub-
mitted to a more general change of modality: sound, voice, or gesture can advanta-
geously replace a graphical widget, like in the sound widgets toolkit [2]. In an
ultimate example, related functions can also presented in collapsible tool bars (Fig. 2),
like the icons belt of MacOSX or like object toolbars in Corel PaintShop that change
according to the object currently being drawn.

Fig. 2. Collapsible tool bars

Fig. 2 shows how the arrow at the bottom left corner can be expanded to display
options related to the object being drawn (one property and its value at a time is dis-
played, all properties can be scrolled). When the object is finally drawn, the tool bar is
collapsed. If another object is input, the arrow is expanded again with other similar
properties. Techniques that affect the initial design dynamically open the door to yet
unexplored or unexplored capabilities, including the notion of plastic UIs [3,4,7,24].
The plasticity of UIs concerns the capacity of a multi-context UI to preserve usability
properties across the various contexts of use, the context of use being defined here as
a triple (user, platform, environment) [3]. To exhibit such a capability, some recon-
figuration of the UI is often needed. The reconfiguration of UI widgets such as dialog
boxes, controls, menu bars and pull-down menus is an example of a physical adapta-
tion. Another possibility is to adapt the very task that the system is to perform.
Browne, Totterdell, and Normann [1] present a classification of adaptations in which
they observe and regret that most adaptive systems embed hard wired mappings from
the set of states to the set of possible adaptations, thus making the adaptivity mecha-
nism rather inflexible. To go one step further than this type of adaptivity, while

184 J. Vanderdonckt and J.M. Gonzalez Calleros

considering the plasticity, we would like to investigate to what extent UI can be ”plas-
tified” at a higher level of concern than the physical one.

For this purpose, the remainder of this paper is structured as follows: Section 2 re-
ports on some related work on the different levels of plasticity that have been ex-
plored so far. Section 3 describes UbiDraw, a vectorial drawing system whose UI
supports task-driven plasticity based on a small toolkit of task-driven plastic widgets,
called UbiWidgets. This application has been chosen because it is not a trivial UI: it is
not a simple form web-based application, for which multiple adaptation mechanisms
have been considered so far. Section 4 investigates the effect of using UbiWidgets on
the user preference by conducting some usability testing. Finally, Section 5 concludes
the paper by summarizing the advantages and shortcomings of this approach, mainly
through properties of interest.

2 Related Work

Since the notion of plasticity has been introduced [24], many different works have
been dedicated to experiencing how to implement an interactive system that satisfies
this property. The notion of plasticity leaves open the usability or quality properties
(e.g., [12]) with respect to which some level of usability should be maintained and
leaves open the contextual characteristics with respect to which the UI should be
made plastic. In the Cameleon Reference Framework [3], the context of use is defined
as a triple (user, computing platform, environment), each of these dimensions being
equipped with relevant contextual characteristics. In particular, the UsiXML User In-
terface Description Language (UIDL) [27] is compliant with this framework and de-
ploys a series of attributes for each of these three dimensions. Consequently, any
potential variation of one or many of these attributes may represent a change of con-
text with respect to which the UI should be adapted. Of course, not all such variations
should be supported, only those which are really significant.

The mechanism of the software probe for sensing the context of use has been ex-
plained in [4]: it allows deploying interactive systems that constantly probe the con-
text of use for a significant change and that reflect such a change into a UI adaptation.
As far as we know, this adaptation is performed at the level of the Final UI [3]. Ja-
barin demonstrated how to implement efficient software architecture for such a final-
UI level plasticity [17]. Schneider et al. [21 introduced abstract user interfaces whose
implementation is independent of the underlying computing platform and that offers
multiple representations of concrete UIs for the same description. Therefore, the plas-
ticity is located at the Concrete UI level as defined in the Cameleon Reference
Framework [3]. All widgets, although called abstract, belong to a Graphical UI. They
should not be confused with a AUI belonging to the Abstract UI level [3]. Crease et
al. [5] introduced a toolkit of context-aware widgets that embed plasticity at the Ab-
stract UI level [3]: in this toolkit, widgets have been abstracted with respect to the
underlying physical environment so as to form platform-independent widgets. These
widgets can also change their interaction modality.

Hence, the plasticity can be declined at any level of the Cameleon Reference
Framework as noticed in [8,17], but so far only the lower levels of this framework
have been successfully investigated. The only noticeable exception that we are aware

 Task-Driven Plasticity: One Step Forward with UbiDraw 185

of is the system of Comets [8], that propagates interaction needs from the final UI to
the task and domain level through concrete and abstract UIs via a set of logical map-
pings. The support for plasticity is therefore distributed continuously from the final UI
(lowest level) to the task and domain level (topmost level).

Our work differs from the aforementioned initiatives in that it drives the plasticity
mechanism from a task model located at the task & domain level. It is then propa-
gated downwards to dedicated widgets. A change of the context of use is firstly inter-
preted in terms of a task variation that is then reflected into the Concrete UI level and
Final UI level, respectively. The difference between Comets [8] and UbiWidgets is
that the task definition is embedded in a Comet that is developed fit-to-the purpose,
while UbiWidgets is based on a mechanism exploiting a task model dynamically. This
makes the system independent of any task. In addition, the concrete UI level is con-
stantly modeled via a CUI as defined in the UsiXML (User Interface eXtensible
Markup Language – http://www.usixml.org) [27] and the navigation is specified
thanks to a system of screen transitions [26]. Not all attributes used in a UsiXML-
compliant CUI are used here though, only a subset of them. On the other hand, the
Comets maintain a perpetual correspondence between the Comet type (which is aware
of the task it is supporting) and the FUI through AUI and CUI, thus making it more
flexible than UbiWidgets supporting only the CUI level.

3 UbiDraw: A Task-Driven Plastic Drawing System

This section is structured as follows: first, a general overview of UbiDraw is provided
that shows how the UI is adaptive with respect to the users’ task; then, the underlying
software architecture is explained, along with its context watcher; finally, Ubi-
Widgets, the toolkit of widgets supporting plastic-driven plasticity, is described.

3.1 General Overview of UbiDraw

UbiDraw was developed using Mozart environment [28] and its graphical toolkit Qtk
[13]. This environment is by definition multi-platform since it offers an implementa-
tion layer where a system is implemented once, and running similarly on Linux,
Windows, and Mac platforms. Qtk has been itself implemented on top of the Mozart
environment based on the Oz programming language, which is a multi-paradigm pro-
gramming language. Qtk has been used similarly to implement FlexClock [14].

UbiDraw provides four set of drawing functionalities grouped by similarity in a
toolbar attached to an item of the menu bar: File, Draw, Options, and Retouch. Every
toolbar can be displayed at different locations of the main application window de-
pending on the size and resolution of the application running on a particular platform.
Each group may be displayed in three different ways according to its status (Fig. 3):

1. Hidden: all icons of the toolbar attached to the menu item are not visible.
2. Vertically displayed: all icons are arranged in a vertically-displayed tool bar.
3. Horizontally displayed: all icons are arranged in a horizontally-displayed tool

bar.

186 J. Vanderdonckt and J.M. Gonzalez Calleros

Fig. 3 graphically depicts these three possible displays: Fig. 3a has the “File” and
“Draw” toolbars displayed while the “Options” and “Retouch” toolbars are hidden so
as to maximize the screen real estate (here, of a PocketPC running UbiDraw); Fig. 3b
has the toolbar “Retouch” in vertical state since it is currently being displayed in a
vertical way when activated; Fig. 3c has the “Options” and “Retouch” tool bars in
horizontal state since they are displayed horizontally corresponding to the active
menu items. Each toolbar does not necessarily displays all icons of the group: its size
can range from none (when its status is hidden) to maximum (when all icons are dis-
played either in vertical or in horizontal status).

Fig. 3. The three different possible displays of tool bars

In order to determine the size of a non-hidden toolbar and how many icons should
be displayed, UbiDraw is relying on a priority scale system where the icons being dis-
played are regulated by 3 priorities: the last icon being clicked, the rank representing
the users’ preference/need for this icon, and the amount of clicks on this icon. There-
fore, the higher the priority of an icon is, the more likely it will be displayed. In this
way, UbiDraw can determine at run-time the UI configuration to be displayed. Fig. 4
reproduces a situation before and after run-time plasticity where the horizontal screen
resolution has been increased.

Fig. 4. UbiDraw before and after horizontal resizing of the main window

(a) (b) (c)

 Task-Driven Plasticity: One Step Forward with UbiDraw 187

3.2 Software Architecture of UbiDraw

If we consider the process of plasticity with respect to a view of the software architec-
ture, its processing can be located at different places [12]:

- At the UI component: the plasticity is then embedded in the widget level and be-
comes transparent for the developer;

- At the UI adaptation component: the plasticity is embodied in the component so
that it can regulated more flexibly through appropriate techniques, such as produc-
tion rules, inference mechanisms, decision trees, etc.

- At the UI control component: the plasticity is regulated at the highest possible level
in the metamodel. In this case, only control rules govern the plasticity. We are not
aware of ongoing work regarding this level of plasticity apart in Comets [8].

GUI

UbiDraw

UndoList

CustomCanvas

UbiWidgetsFileSystemDataProcess

DrawObjects

Class

« Uses » relationship

GUI

UbiDraw

UndoList

CustomCanvas

UbiWidgetsFileSystemDataProcess

DrawObjects

Class

« Uses » relationship

Fig. 5. Software architecture of UbiDraw

Fig. 6. Steps of run-time plasticity in UbiDraw

For UbiDraw, we chose the last option. UbiDraw is implemented in several classes
(Fig. 5): the main class uses respectively a GUI class (implemented as a concrete UI
that will be further described later on), an undo list to keep track of action history, and
a dataProcess class that uses the various drawing objects and facilities. The GUI
mainly consists of a customCanvas that is in turn decomposed of UbiWidgets (the
items of the menu bar and their associated tool bars with icons). The customCanvas
selects one of the three states for each UbiWidget depending on the ContextWatcher

188 J. Vanderdonckt and J.M. Gonzalez Calleros

(that is further described in the next sub-section) that is similar to the context probe
[4]. The central component for the adaptation mechanism is the UbiWidget compo-
nent. It contains a class called ContextWatcher, responsible for the placement of the
widgets populating the application, and a class UbiWidget, whose instances are plas-
tic widgets.

Fig. 7. The run-time mechanism of UbiWidget

Each drawing task of each group is assigned to a UbiWidget, which registers itself
to the contextWatcher (Fig. 7) that assigns an initial size. Depending on that status,
the UbiWidget displays itself or not. If the context changes, that is if the size of the
main application window changes, the contxtWatcher, watching this display surface,
is notified and, after calculation, sets a new status and size for each UbiWidget.
Ubidraw is composed of a set of components, each assuming a set of functionalities of
the application. Fig. 6 shows a general framework identifying several steps for run-
time plasticity as it is implemented in UbiDraw. These steps are:

1. Situation recognition involves sensing the context, detecting context change and
identify context change. In the case of UbiDraw window resize listener triggers
the computation of a reaction;

2. Computation of a reaction consists in the following: identify candidate reaction,
select candidate reactions. UbiDraw has one possible reaction i.e. recalculate lay-
out, its calculation mechanism is explained below

3. Execute reaction consists of three steps: prepare the reaction, execute and close
the reaction.

UbiDraw applies instantaneously a reaction result. Adaptation with UbiDraw always
results from a user initiative (either he/she resizes a window or uses a different plat-
form). Consequently, no particular precaution has to be taken to execute a reaction
and there is no need to incorporate an initiative step since it the adaptive UI always
triggers adaptivity after a significant change of context occurs. For this purpose,
UbiDraw contains a watch method whose main algorithm is explained in pseudo-code
below.

 Task-Driven Plasticity: One Step Forward with UbiDraw 189

meth watch()
Sx={QTk.wInfo width(@canvashandle)}
Sy={QTk.wInfo height(@canvashandle)}

% LeftSize provides information on space available
LeftSizeX={NewCell Sx}
LeftSizeY={NewCell Sy}

% ScrollX determines where to locate UbiWidgets
ScrollX={NewCell 0}

% StatusList specifies if a UbiWidget should be displayed
StatusList = {List.make {List.length @ubiwidgets $} $}

in

% UbiWidgets are sorted according to their rank of importance
rankedubiwidgets <- {List.sort @ubiwidgets
 fun{$ O1 O2}
 if O1.rank > O2.rank
 then
 false
 else
 true
 end
 end}
 % First selection of UbiWidgets to be displayed
 {List.forAllInd @rankedubiwidgets
 proc{$ I UW}

 % If the available size is smaller than the minimal size of
 % the UbiWiget, the nit will be undisplayed. If not, it
 % will be displayed.
 if {Access LeftSizeX $}<{UW getMinSizeX($)}
 then
 % UbiWidget will be undisplayed (hidden)
 {UW hide()}
 {List.nth StatusList I $}='Hide'
 else
 % UbiWidget will be displayed and its minimal size will
 % be removed from pool of available space
 {Assign LeftSizeX {Access LeftSizeX $}
 -{UW getMinSizeX($)}}
 {List.nth StatusList I $}='Show'
 end
 end}

 % Now, we know which UbiWidgets will be displayed. The
 % remaining available space is then shared among them.
 % For this purpose, all UbiWidgets coordinates are computed
 % via the Scroll function and the allocated space is then
 % passed to them.
 {List.forAllInd @rankedubiwidgets

190 J. Vanderdonckt and J.M. Gonzalez Calleros

 proc{$ I UW}
 if {List.nth StatusList I $}=='Show'

 then
 % Only the maximum size should be allocated to UbiWidg.
 if {Access LeftSizeX $}<{UW getMaxSizeX($)}

 -{UW getMinSizeX($)}
 then
 % If the space allocated is less than the UbiWidget

 % maximum size, this means that it benefits from
 % remaining available space thanks to the priority
 {UW setCoords({Access ScrollX $} 0)}

 {Assign ScrollX {Access ScrollX $}
 +{UW getMinSizeX($)}+{Access LeftSizeX $}}

 {Assign LeftSizeX 0}
 else

 {UW setCoords({Access ScrollX $} 0)}
 {Assign LeftSizeX {Access LeftSizeX $}

 -({UW getMaxSizeX($)}-{UW getMinSizeX($)})}
 {Assign ScrollX {Access ScrollX $}
 +{UW getMaxSizeX($)}}
 end
 end
 end}
end

3.3 The ContextWatcher

The ContextWatcher is equipped with a method called watch which observers any
change in the drawing canvas size and applies the appropriate presentation. In order to
compute the most appropriate trasformation the ContextWatcher needs three informa-
tion from every UbiWidgets registered to it: its minimal size, its maximal size, the
ranking of the task it supports. The ranking establishes a priority mechanism. The
ContextWatcher sorts the UbiWidgets according to their ranking level and, conse-
quently, the widget with the highest ranking will be rendered first. The placement al-
gorithm will always try to place a maximal number of widgets onto the canvas.
Consequently UbiWidget minimal sizes are firstly taken into account. If, considering
all minimal sizes, all widgets can not be rendered, the space left by unrendered wid-
gets is distributed, on a first rank first serve, among remaining widgets.

The ContextWatcher communicates to each UbiWidget its actual size, and location
onto the canvas. UbiWidget can now draw itself. Some tasks are considered as indis-
pensable to the application. In this case, their ranking can be set to 0. Consequently
the widgets that support them will be rendered whatever the available size, even if this
size in lower than the min size of the widget. Furthermore the registration mechanism
allows widgets to register or unregister dynamically. That is to say that from the mo-
ment that a widget provides its minimal size, maximal size and the ranking of the
task it supports, it can be integrated into the current UI at run-time. The Con-
textWatcher communicates their position and size constraints to UbiWidgets. Consid-
ering this, UbiWidgets have the faculty to choose between different states. The show
method assumes the selection of the appropriate presentation.

 Task-Driven Plasticity: One Step Forward with UbiDraw 191

Table 1 shows different UbiWidget size allocations over time: in the first three
rows, 3 UbiWidgets are being allocated a minimum size, a maximum size, and a rank.
If the screen resolution is increased to, say, 55 pixels, then the next three rows show
the new mimimum size, the increment, and the final allocated size. The last three
rows show the same when the screen resolution has been increased of 90 pixels.

task

id
name
importance
taskType
frequency

plasticWidget

id
minHeight
minWidth
maxHeight
maxWidth

GraphicalCio

id
name
icon
content
defaultCaption
isVisible
isEnabled
fgColor
bgColor

graphicalContainergraphicalIndividualComponent

menuItem

id
icon
content
type

textComponent

imageComponent

button

menu

drawingCanvas

Task

Concrete User Interface (CUI)

Final User Interface (FUI)

3:selectsBestAppearance

contextWatcher

1:detectsChange

2:setSpaceConstraints

4:tellAppearance

5:display

task

id
name
importance
taskType
frequency

task

id
name
importance
taskType
frequency

plasticWidget

id
minHeight
minWidth
maxHeight
maxWidth

plasticWidget

id
minHeight
minWidth
maxHeight
maxWidth

GraphicalCio

id
name
icon
content
defaultCaption
isVisible
isEnabled
fgColor
bgColor

GraphicalCio

id
name
icon
content
defaultCaption
isVisible
isEnabled
fgColor
bgColor

graphicalContainergraphicalContainergraphicalIndividualComponentgraphicalIndividualComponent

menuItem

id
icon
content
type

menuItem

id
icon
content
type

textComponent

imageComponent

button

menu

drawingCanvas

textComponent

imageComponent

button

menu

drawingCanvas

Task

Concrete User Interface (CUI)

Final User Interface (FUI)

3:selectsBestAppearance

contextWatcher

1:detectsChange

2:setSpaceConstraints

4:tellAppearance

5:display

Fig. 8. Links between the context watcher and the underlying models

192 J. Vanderdonckt and J.M. Gonzalez Calleros

Table 1. Example of UbiWidget size allocations

 UbiWidget1 UbiWidget2 UbiWidget 3
Minimum size 20 30 10
Maximum size 40 60 20
Rank 1 2 2
Minimum size 20 30 10
Increment 5 0 0
Allocated size 20 + 5 = 25 30 /
Minimum size 20 30 10
Increment 40 60 20
Allocated size 20 + 20 = 40 30 + 10 = 40 10

Fig. 8 graphically depicts the links between the various UbiDraw components (in
particular, the context watcher) and the underlying models: a minimal task model
consists of decomposition of tasks into sub-tasks, each with its own parameters; each
task is linked to appropriate graphicalCIO (according to UsiXML name) such as
textComponent, drawingCanvas, etc. wich are then associated to a menu item in the
menu bar. In this way, a simple concrete UI is maintained at run-time from which the
context watcher can retrieve properties values (e.g., the rank of each task as repre-
sented in the top left corner of Fig. 8) and to which the context watcher can assign
new values. The model of the CUI is then interpreted into a final UI thanks to the run-
time mechanism of Qtk that stores a GUI in terms of records. Each time a plasticity
operation occurs, these records maintaining the models are updated.

4 Usability Analysis by User Testing

Method. In order to test the UbiDraw usability, a questionnaire-based evaluation was
performed on a sample of 9 users chosen for their heterogeneous level 1) of expertise
in computer manipulation expertise, the fact that they already used an iPaq PocketPC
was notably taken into account 2) familiarity with the task at hand that is to say com-
puter supported drawing. Users were asked to perform four different tasks: load an
existing drawing, draw a line, draw a rectangle with mid-sized lines and, finally, draw
a house. The first three tasks had to be realized as quick as possible. The last task (a
higher level task) was proposed to be realized on a desktop-based platform. For this
last task, the user was explicitly invited to test the plasticity of the application, that is
to say to resize the main window to fit his/her task. Furthermore, the user was asked
to indicate which adaptation mechanism s/he favored. These choices refer to heuris-
tics presented in section i.e., ranking click number, click number Ranking. The user
was then invited to rank the available tasks according to his preferences. S/he was
then invited to test the application with and without his customized ranking. The re-
sults were collected in a questionnaire with items represented according to 7-point
Likert scale. Items were 7-point graphic scales, anchored at the end points with the
terms "Strongly agree" for 1, "Strongly disagree" for 7, and a "Not applicable" (N/A)
point outside the scale. Some space was left at the end of the questionnaires for posi-
tive and negative aspects, and for further comments.

 Task-Driven Plasticity: One Step Forward with UbiDraw 193

Results and discussion. From the adaptation perspective it seems that most of the us-
ers preferred the ’task ranking’ heuristic to the ’number of clicks’ heuristic. This
choice was mainly made by experienced users. This may be explained by the fact that
experienced users knew a priori which tasks where more important for them in a
drawing application whether inexperienced users wanted to feel the system adapt
while using the software. It is also very interesting to note that there was no real con-
sensus between users on the ranking of tasks. This provides us with an unexpected ar-
gument foe the need of adaptation mechanisms. Finally, most of the users found that
the adaptation mechanism did not disturb them at all in the realization of tasks.
Table 2 shows the results collected from this user testing: all participants were able to
complete each task in a reasonable amount of time (the last task being of course the
longest) and a moderate error rate. Table 3 reports on the final preference for the
groups of items. Table 4 gives the average score for each item found in the question-
naire (UbiDraw is easy to use, UbiDraw is more handy than a piece of paper,
UbiDraw benefits from a useful context-sensitive help, UbiDraw provides a clear
feedback for available functions, UbiDraw enables me to draw what I want, UbiDraw
is flexible to use and its adaptation does not disturb task completion, UbiDraw is
pleasant to use).

Table 2. Results collected from the user testing

Task Task completion rate Speed Error rate
1 100 % 12 s 0,1
2 100 % 19 s 0,7
3 100 % 18 s 0,7
4 100 % 232 s 1,4

Table 3. Participants’ preference for groups of icons

 File Draw Options Retouch
Rank in first configuration 1 2 3 4
Rank in second configuration 2 1 1 2

Table 4. Results from the questionnaire

Item 1 2 3 4 5 6 7
Average 6 4 6 5 5 6 6

5 Conclusion

In this paper, a drawing application called UbiDraw has been presented that benefit
from some original properties:

– A unique form of plasticity: a mechanism for UI plasticity of both the presentation
and the dialogue levels was implemented in order to maximize the observability
[12] of UI widgets throughout task completion.

194 J. Vanderdonckt and J.M. Gonzalez Calleros

– A task-driven mechanism: the display of the four tool boxes is influenced by the
respective task frequencies or ranking of these tasks by the user, thus providing
some support to plasticity at the task level rather than at the interface level.

– An instantiation of the general software architecture for plasticity as introduced in
[4]: thanks to the UbiWidget, the UbiMenu, and the ContextWatcher, the plasticity
mechanism is supported in a way that leaves room for further inclusion of other
functions and tool boxes without affecting the whole architecture. Again, the gen-
eral software architecture [4] has been proved applicable to an unreached level of
flexibility.

– A distribution of responsibilities: it is interesting to notice that the control of
screen real estate is not concentrated into one single place: rather than having each
widget with total local control or totally governed by a higher level controller, the
control of screen space in UbiDraw is distributed between the ContextWatcher
level, which is responsible for assigning a location and a portion of the screen to a
UbiWidget, and the UbiWidget itself, which is responsible for finding out the most
usable presentation among the set of alternatives maintained at the widget level.
The algorithm used for that has been briefly outlined.

– A reasonable usability: although a preliminary user testing conducted to assess the
plasticity of UbiDraw revealed that UbiDraw was rather positively adopted by both
novice and expert users, it is important to proceed with more empirical studies.
Adaptive UIs are well known to induce some sort confusion in the behavior of the
end user, whatever the type of adaptation. Indeed, as soon as there is some auto-
matic change in the UI without the prior demand or consent of the end user, some
sort of perturbation may arise. We are not aware of any empirical study that proves
the positive impact of plasticity on usability, but there are several studies [10,25,29]
that prove that for UI adaptivity. Therefore, we reasonable believe that, since plas-
ticity could be considered as a particular case of UI adaptivity, the observation may
apply as well to plasticity. Jameson et al. [18] argues for the need of empirical basis
for adaptation in general and provides a framework for this purpose. Right now,
different usability criteria may be considered in evaluating task-driven plastic UIs
like the one implemented in UbiDraw to analyse the perturbation type that may be
induced by plasticity. For instance, SUPPLE++ demonstrated that it is possible to
automatically generate graphical UIs that positively affect predictability and accu-
racy [10] for general users or motor-impaired [11]. Since today there is no consen-
sus on how to assess the adaptation in general [18,25], we do not know exactly
what metric to use for assessing the plasticity, although it has been recognized that
it should be a multi-criteria approach.

– Consistency: each UI change resulting from changing the context of use (here, the
screen resolution changes) should be uniformly applied and perceived as such by
the end user. This may turn out hard to achieve as small close changes of window
sizes may be perceived as rather different adaptations of the UI.

– Continuity: more general than consistency, each UI change resulting from chang-
ing the context of use should preserve the three levels of continuity: perceptual,
functional, and cognitive [3,9]. Continuity is also a property that can be significant
for adaptation to the context of use, as observed in [9].

 Task-Driven Plasticity: One Step Forward with UbiDraw 195

These criteria, and perhaps other ones, prove that further investigation is required to
fully assess the usability properties of interest that are predefined in the plasticity no-
tion. UbiDraw is on the other hand restricted to a simple context change: window re-
sizing and change of platform. We did not investigate further how other changes of
contextual properties may significantly or not affect the UI plasticity.

References

1. Brown, D., Totterdell, P., Norman, M.: Adaptive User Interfaces. Academic Press, London
(1990)

2. Brewster, S.: The Design of Sonically-Enhanced Widgets. Interacting with Com-
puters 11(2), 211–235 (1998)

3. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the Develop-
ment of Plastic User Interfaces. In: Nigay, L., Little, M.R. (eds.) EHCI 2001. LNCS,
vol. 2254, pp. 173–192. Springer, Heidelberg (2001)

4. Calvary, G., Coutaz, J., Thevenin, D.: Supporting Context Changes for Plastic User Inter-
faces: A Process and a Mechanism. In: Proc. of Joint Conf. on Human-Computer Interac-
tion IHM-HCI 2001, Lille, September 12-14, 2001, pp. 349–363. Springer, London (2001)

5. Crease, M., Brewster, S., Gray, Ph.: Caring, Sharing Widgets: A Toolkit of Sensitive Wid-
gets. In: Proc. of BCS Conf. on Human-Computer Interaction HCI 2000 “People and com-
puters XIV”, Sunderland, September 5-8, 2000, pp. 257–270. Springer, London (2000)

6. Coutaz, J., Balme, L., Alvaro, X., Calvary, G., Demeure, A., Sottet, J.-S.: An MDE-SOA
Approach to Support Plastic User Interfaces in Ambient Spaces. In: Stephanidis, C. (ed.)
UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 63–72. Springer, Heidelberg (2007)

7. Coutaz, J., Calvary, G.: HCI and Software Engineering: Designing for User Interface Plas-
ticity. In: Sears, A., Jacko, J. (eds.) The Human-Computer Interaction Handbook: Funda-
mentals, Evolving Technologies, and Emerging Applications. Human Factor and Ergo-
nomics series, pp. 1107–1125. Taylor & Francis CRC Press (2008)

8. Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J.: The Comets Inspector: Towards
Run Time Plasticity Control based on a Semantic Network. In: Coninx, K., Luyten, K.,
Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 324–338. Springer, Hei-
delberg (2007)

9. Florins, M., Trevisan, D., Vanderdonckt, J.: The Continuity Property in Mixed Reality and
Multi-platform Systems: a Comparative Study. In: Proc. of 5th Int. Conf. on Computer-
Aided Design of User Interfaces CADUI 2004, Funchal, January 14-16, 2004, pp. 321–
332. Kluwer Academics Pub., Dordrecht (2004)

10. Gajos, K., Everitt, K., Tan, D.S., Czerwinsky, M., Weld, D.S.: Predictability and Accuracy
in adaptive user interfaces. In: Proc. of ACM Conf. on Human Aspects in Computing Sys-
tems CHI 2008, Florence, April 5-10, 2008, pp. 1271–1274. ACM Press, New York
(2008)

11. Gajos, K., Wobbrock, J.O., Weld, D.: Improving the performance of motor-impaired users
with automatically-generated, ability-based interfaces. In: Proc. of ACM Conf. on Human
Aspects in Computing Systems CHI 2008, Florence, April 5-10, 2008, pp. 1257–1266.
ACM Press, New York (2008)

12. Gram, Ch., Cockton, G.: Design Principles for Interactive Software. Chapman & Hall Pub-
lishers, London (1996)

196 J. Vanderdonckt and J.M. Gonzalez Calleros

13. Grolaux, D., Van Roy, P., Vanderdonckt, J.: QTk: A Mixed Model-Based Approach to
Designing Executable User Interfaces. In: Nigay, L., Little, M.R. (eds.) EHCI 2001.
LNCS, vol. 2254, pp. 109–110. Springer, Heidelberg (2001)

14. Grolaux, D., Van Roy, P., Vanderdonckt, J.: FlexClock, a Plastic Clock Written in Oz with
the QTk toolkit. In: Proc. of 1st Int. Workshop on Task Models and Diagrams for user in-
terface design TAMODIA 2002, July 18-19, 2002, pp. 135–142. Academy of Economic
Studies of Bucharest, INFOREC Printing House, Bucharest (2002)

15. Grolaux, D., Vanderdonckt, J., Van Roy, P.: Attach me, Detach me, Assemble me like You
Work. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 198–
212. Springer, Heidelberg (2005)

16. Hick, W.E.: On the rate of gain of information. Quarterly Journal of Experimental Psy-
chology 4, 11–26 (1952)

17. Jabarin, B., Graham, N.T.C.: Architectures for Widget-Level Plasticity. In: Jorge, J.A.,
Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 124–138.
Springer, Heidelberg (2003)

18. Jameson, A., Grossman-Hutter, B., March, L., Rummer, R.: Creating an empirical basis for
adaptation techniques. In: Proc. of ACM Conf. on Intelligent User Interfaces IUI 2000,
New Orleans, January 9-12, 2000, pp. 149–156. ACM Press, New York (2000)

19. Montero, F., López-Jaquero, V., Molina, J.P., González, P.: An Approach to Develop User
Interfaces with Plasticity. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-
IS 2003. LNCS, vol. 2844, pp. 420–423. Springer, Heidelberg (2003)

20. Rekimoto, J., Masanori, S.: Augmented Surfaces: A Spatially Continuous Work Space for
Hybrid Computing Environments. In: Proc. of ACM Conf. on Human Aspects in Comput-
ing Systems CHI 1999, Pittsburgh, May 15-20, 1999, pp. 378–385. ACM Press, NY (1999)

21. Schneider, K.A., Cordy, J.R.: Abstract User Interfaces: A Model and Notation to Support
Plasticity in Interactive Systems. In: DSV-IS 2002. LNCS, vol. 2545, pp. 28–48. Springer,
Heidelberg (2002)

22. Sendin, M., Lores, J., Montero, F., Lopez, V.: Towards a Framework to develop plastic
user interfaces. In: Chittaro, L. (ed.) Mobile HCI 2003. LNCS, vol. 2795, pp. 428–433.
Springer, Heidelberg (2003)

23. Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J., Demeure, A., Balme, L.: Towards
Model-Driven Engineering of Plastic User Interfaces. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 191–200. Springer, Heidelberg (2006)

24. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Proc. of IFIP Int. Conf. on Human-Computer Interaction Interact 1999, Edinburgh,
September 1999, pp. 110–117. IOS Press, Amsterdam (1999)

25. Tsandilas, T., Schraefel, M.C.: An empirical assessment of adaptation techniques. In: Proc.
of ACM Conf. on Human Aspects in Computing Systems CHI 2005, Portland, April 2-7,
2008, pp. 2009–2012. ACM Press, New York (2005)

26. Vanderdonckt, J., Limbourg, Q., Florins, M.: Deriving the Navigational Structure of a User
Interface. In: Proc. of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTER-
ACT 2003, Zurich, September 1-5, 2003, pp. 455–462. IOS Press, Amsterdam (2003)

27. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

28. Van Roy, P., Haridi, S.: Concepts. MIT Press, New York (2004)
29. Weibelzahl, S.: Evaluation of adaptive systems. In: Bauer, M., Gmytrasiewicz, P.J., Vas-

sileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 292–294. Springer, Heidelberg
(2001)

The Guilet Dialog Model and Dialog Core for Graphical
User Interfaces

Jürgen Rückert and Barbara Paech

Institute of Computer Science, University of Heidelberg, Germany
{rueckert,paech}@uni-heidelberg.de

http://www-swe.informatik.uni-heidelberg.de

Abstract. Model-based approaches to graphical user interfaces (GUIs) achieved
poor acceptance of software engineers because the offer models, architectures,
components, frameworks and libraries that restrict the flexibility of development
too much. We propose a dialog model which enables flexible development with
no restrictions on presentation and application layer and without any implemen-
tation-technology dependence. The dialog model supports GUI designers and de-
velopers in understanding the behavior of the GUI. The dialog model controls
the dialog core component. The dialog component relieves GUI developers of
re-implementing the coordination of presentation and application layer.

Keywords: Model-based user interfaces. Dialog models. Dialog cores. UI
engines.

1 Introduction

Model-based approaches to graphical user interfaces (GUIs) achieved poor acceptance
of software engineers because they restrict the flexibility of development too much.
They rarely offer models, architectures, components, frameworks and libraries that can
fully be adapted to customer needs [11]:

P1. GUI designers are not able to describe the presentation that usability engineers
defined (in mock-ups). For instance, the approach does not support the modeling
of complex graphical components which would be necessary in order to guarantee
the usable GUI.

P2. Software architects are not able to integrate existing application layers and their
application services into the GUI. For instance, the approach does not consider the
different application service technologies and their corresponding different integra-
tion mechanisms.

P3. GUI Developers are not able to transfer a GUI to another platform as the behavior is
hidden in the platform-specific implementation parts and hardly changeable. In this
case it is hardly possible to re-use components that are responsible for controlling
the GUI. For instance, the approach does not allow for a desktop application to
be transferred to a PDA application by splitting few large screens into many small
screens and does not allow adding a wizard-like behavior to walk through the small
screens.

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 197–204, 2008.
c© IFIP International Federation for Information Processing 2008

198 J. Rückert and B. Paech

P4. GUI Developers use development tools that are not integrated with the modeling
tools of the designers which easily results in implementations that no longer reflect
the actual design.

We propose an approach to develop GUIs that puts dialog modeling in the center of
design and implementation. The Guilet Dialog Model (GDM) (1.) allows designers to
model the behavior of the GUI graphically (P1, P4) and (2.) allows developers to realize
the presentation and application layer using any implementation technologies (P2) by
identifying abstract behavioural building blocks (P3), namely the Guilets. An optional
reusable Guilet Dialog Core (GDC) component that is controlled by the GDM (3.)
relieves developers of re-implementing the coordination of presentation and application
layer without restricting the GUI architecture too much (P2) and (4.) allows developers
to transfer (P3) the GUI between applications of a specific platform (e.g. inside the Java
platform between Java Swing, Java Web and Eclipse Rich Client applications).

Section 2 defines major functional and non-functional requirements of dialog core
models. Section 3 presents an easy to understand example that shows the graphical no-
tation of the GDM (3.1). Afterwards, the modeling elements of the GDM are explained
(3.2). Section 4 presents first experiences gathered in an in-house and in a commercial
project. Section 5 summarizes the article and gives an outlook.

2 Requirements of Dialog Core Models

The major functional requirements for dialog cores models can be retrieved from the
articles on GUI architectures like the Model-View-Control pattern, the Presentation-
Abstraction-Control pattern [5], the Arch model [10] and OpenQuasar [14]. The re-
quirements focus on the coordination of presentation and application layer: A dialog
core should be able (F1) to create and destroy graphical components (like views) and
their sub-components (like widgets), (F2) to create and maintain the communication
channels with application services, and finally (F3) to process events that are created by
users in the presentation layer or by application services in the application layer. Pro-
cessing events encloses (F3.1) sending events to views and widgets in order to change
their status, (F3.2) sending data to views or retrieving data from views, and (F3.3) call
application services and interpret the results or exceptions. Usually, the event process-
ing is specific to each event source (e.g. graphical component) and each event type (e.g.
click, focus).

The major non-functional requirements for dialog cores models are outlined in
Figure 1. We detailed the ISO/IEC 9126 quality categories (at the top) by requirements
that we elicited from the literature on model-based UI approaches [8] [1] [13] [15] [3]
[12] [16] [6] [9] [17] [2] [4]. These requirements are software requirements but not end-
user requirements because dialog core models are artefacts that are used hidden inside
the GUI.

The quality attribute set Functionality describes in how far the DM implements the
demanded functionality (see above). The quality attribute set Reliability describes in
how far the DM is able to model a certain level of performance under defined conditions
for a stated period of time. The quality attribute set Usability describes the designer’s
effort of creating and manipulating the DM. The quality attribute set Maintainability

The Guilet Dialog Model and Dialog Core for Graphical User Interfaces 199

Fig. 1. Non-functional Requirements for Dialog Core Models (gray boxes at the left mark con-
ceptual requirements, gray boxes at the right mark engineering requirements)

describes the effort needed to make necessary changes in the DM. The quality attribute
set Portability describes the ability of the DM to be transferred from on environment to
another.

1 Rich and Thin Clients: The DM should be reusable for stand-alone applications as
well as Web applications.

2 Multi-Views: The DM should be able to handle multiple views (e.g. panels), that
are visible at the same time and are part of a screen (e.g. a frame or a web page).

3 Multi-User: The DM should be able to model the influence of access rights of users
and roles on the GUI behavior.

4 Context Dependency: The DM should be able to model the dependency between
page structure, page flow and inserted data, user, computing platform and work
environment.

5 Transactions: The DM should support the modeling of two transactions types:
transactions during the period of processing multiple events and during process-
ing single events.

6 Exception Handling: The DM should allow modeling expected exceptions during
event processing.

7 Concurrency: The DM should support modeling concurrent event processing.
8 Tool Support: The DM should be maintainable with a domain-specific (dialog)

modeling tool to shorten design time.
9 Eclipse Platform: The DM should be maintainable on the Eclipse platform because

of the high acceptance and usage experience of software developers and the seam-
less integration of design and implementation.

10 Graphical Notation: The DM should be graphically editable instead of textually
(including XML) because this ensures faster understandability.

11 Reusability: The DM should not constrain the usage of implementation technolo-
gies for presentation and application layer technologies.

12 Platform Independence: The DM should not contain any presentation and applica-
tion layer specific information in order to be reusable for a variety of applications
in (Web, desktop and mobile) or between platforms (Sun Java, Microsoft .NET).

200 J. Rückert and B. Paech

3 Guilets

3.1 Application Example

In this section we introduce an application example that does not illustrate all of the so-
lution ideas of the GDM but instead is easy to understand (transactions are left out e.g.).
Figure 2 shows the flow of events between presentation and application layer and the
coordination of the flow by the GDC. Figure 3 shows a screen shot of the view Lecture
Details of our in-house application for administrating students and lectures. Figure 4

Fig. 2. The GDC as central component controlling the behavior of a GUI

Fig. 3. Screen shot of the view Lecture Details

shows the GDM of the view Lecture Details that describes the view’s behavior. The
user starts the application (Main Frame), retrieves a list of lectures (Lectures Overview)
and requests the details of a certain lecture by sending event E3 to the GDC. The GDC
reacts on E3 by triggering event E4 (ShowAndInitialize). As shown in Figure 4, the
GDC invokes 4 executors in parallel. 3 executors query lists of business objects from
application services and forward the lists into these 3 inner Guilets that are able to han-
dle lists of data (e.g. combo boxes or multi line fields). The LoadLecture executor reads
the variable LectureId (circle at the left) that contains the ID of the selected lecture,
queries the appropriate lecture data from an application service (a property defines the
connection reference) and forwards this data to all 4 inner Guilets. The inner Guilets
are either of type textfield, singleSelection or multipleSelection as the inner Guilet type
denotes (not shown). The user triggers the update of the modified data by sending event
E5 (Update) to the GDC. The GDC invokes the executor UpdateLecture that first reads
the data of the 4 inner Guilets, then calls an application service and finally sends either

The Guilet Dialog Model and Dialog Core for Graphical User Interfaces 201

Fig. 4. GDM of the view Lecture Details

the event UpdateOk or UpdateNotOk that may be used for refreshing other views that
are interested in an update (would be modeled as GlTransition). The user closes
the view Lecture Details by sending event E6 (Close) to the GDC. The GDC invokes
the executor CloseView that invokes a suitable GUI service.

3.2 Guilet Dialog Model

The GDM is based on the major elements GlWhiteBoxGuilet, GlBlackBox-
Guilet, GlEventIn, GlEventOut, GlExecutor, GlInnerGuilet and
GlFlow.

Designers model a GlWhiteBoxGuiletwhenever they want to model the behav-
ior of a 2d-container like a view, partial view or widget. Widgets are graphical compo-
nents that receive or provide data and very often allow user input. Partial views are the
smallest composition units of logically related widgets, their size is often determined
by reuse. Views are a composition of partial views and may contain additional wid-
gets themselves. The hierarchical structure of views needs not to be fixed, the enclosed
partial views/widgets and their amount (of recurrence) may depend on the context of
usage. The simplest case e.g. is a view that is not shown until a certain data value was in-
serted/selected in another view. Designers model a GlInnerGuilet whenever they
want to add a view, partial view or widget to a whitebox Guilet. An inner Guilet enables
reuse because it is either of type GlWhiteBoxGuilet or GlBlackBoxGuilet.
It just layouts incoming and outgoing events, but never behavior, in order to avoid

202 J. Rückert and B. Paech

redundant information layout. Designers use a GlBlackBoxGuilet whenever they
want to model a view, partial view or a widget but are not interested in modeling its
behavior (of e.g. a complex widget of a fixed graphical library).

Designers model a GlEventIn or a GlEventOut whenever they want a start-
or endpoint for a certain processing logic. They only need to model events when they
require a processing logic that needs implementation. They do not need to model events
that are processed automatically by the presentation or application layer. For instance,
they do not need to model the event sort rows if the table widget is already capable of
sorting. This decision for the GDM was made in order to reduce the amount of modeled
elements. Events are created by users or by application cores or by the GDC. Typical
events are the initialization of a view and the call of semantical functions (e.g. save data).

Designers model aGlExecutorwhenever they require a behavioral component dur-
ing processing an event. The implemented executors call application services, in order to
query data or invoke semantical functions, or they call GUI services in order to change
the status of graphical components. Designers model a GlVariableAccess (refer-
encing a GlVariable) whenever they want to store the output of an executor or want
to use a stored value as input of an executor. Variables have a scope of validity property.

Designers model a GlFlowwhenever they want to link an event with an executor or
an executor with an event, or an executor with a inner guilet or an inner guilet with an
executor. A flow calls several executors always concurrently because sequential execu-
tors can be merged into one executor. A flow cannot split into two flows by a condition
element because we do not want to overload the model with too much detailed informa-
tion. The conditional cases have to be implemented in the executor, the documentation
property of the executor serves to forward this information from designer to developer.
A special case of a flow is a GlTransition which is an event-to-event call between
two Guilets.

Designers add one or more GlProperty to any of the modeling elements above
whenever they want to enrich the elements with information that they need for pro-
cessing. Usually, executors use properties for the configuration of application services
connections.

4 Experiences

We applied the GDM and the GDC to develop several desktop applications: (1) an in-
house data management application for students and lectures and (2) an application for
a pick list creation which is an add-on application for an existing commercial fashion
logistic solution. The specifications consist of a task model and a domain data model,
virtual windows [7] (task-based mock-ups), system functions and a state chart diagram
(page flow). The virtual windows and the state chart diagram are a well-suited starting
point to design Guilets. The systems were realized as client-server systems. The clients
are implemented in Java Swing and include a GDC in Java. The GDC was reused in both
projects. The presentations are loosely coupled with Java Web Services by the GDC,
more precisely by the executor implementations. The GDC is driven by the GDM which
was modeled using the GMT. During these two projects we were able to check the ful-
fillment of some requirements, as follows. Functionality: (+) Multi-views are fully

The Guilet Dialog Model and Dialog Core for Graphical User Interfaces 203

supported. (+) Multi-users can be modeled by using event properties (edited in XML
directly). Reliability (+) GUI Transactions (useful e.g. for wizards) are supported by
tagging the flow elements with transaction IDs (edited in XML directly). (+-) Several
exceptions of an executor can be modeled. The reason for an exception cannot be mod-
eled, the reason is only accessible in the executor implementation. (+) The assumption
of parallel execution of executors as default is acceptable because sequential executors
can be merged into one. Usability: (+) The GDM definitely should be expressed in a
graphical notation and the GMT must remain a substantial part of the design because
it is very hard to ensure a semantically correct XML using pure text or XML editors.
(+-) On the one hand, the GDM exempts from too many details because of missing
conditional elements. On the other hand, the executor hides the conditional informa-
tion in its implementation. (-) A graphical modeling support for transaction (e.g. path
high-lighting) might be very useful for immediate visualisation of a transaction and its
flows. Maintainability: (+) The executor elements can be mapped to well maintain-
able code structures that easily can be understood even weeks later. We expect that
executors additionally allow collaborative, parallel implementation by several develop-
ers and a transparent tracing of implementation progess. (-) Depending on the level of
the modeled presentation details, the GDM tends to become very large. We learned that
Guilets should not be used to model the presentation hierarchy as a whole, but should
model instead only these event-sending presentation parts that require an event process-
ing by the GDM. (+) The integrated modeling and implementation in Eclipse allowed
incremental development of the GUI. (+) Guilets made development fast because the
hard-to-implement part of coordinating the presentation and application layer is avail-
able as the out-of-the-box component GDC. (-+) 100% reuse of the modeled elements
seems to be rare because usually the properties of same-named Guilet sub-elements
(e.g. properties of executors) of two Guilets differ. Despite, the amount of reuse of ex-
ecutor implementations is high. Portability: (+) The blackbox Guilets serve as a nice
mechanism to model widget libraries and can easily be reused in other Guilets.

5 Summary and Outlook

In this article we introduced a design approach to describe the behavior of graphical
user interfaces. Designers create a Guilet Dialog Model in a graphical notation using
the Guilet Modeling Tool. Developers apply the Guilet Dialog Model as a feed for a
reusable Guilet Dialog Core component that controls the presentation and application
layer using implemented, partially generated executor components. In the future, we
will, due to encouraging project realizations, continue the evaluation of Guilets in order
to evaluate the missing requirements in the area of context dependency.

References

1. Barclay, P., Griffiths, T., McKirdy, J., Paton, N., Cooper, R., Kennedy, J.: The Teallach Tool:
Using Models for Flexible User Interface Design. In: CADUI, pp. 139–158. Kluwer Aca-
demic Publishers, Dordrecht (1999)

2. Brambilla, M., Comai, S., Fraternali, P., Matera, M.: Designing Web Applications with
WebML and WebRatio. Springer, Heidelberg (2007)

204 J. Rückert and B. Paech

3. Browne, T., Davila, D., Rugaber, S., Stirewalt, K.: The Mastermind User Interface Generation
Project. GVU Technical Report GIT-GVU-96-31, Georgia Institute of Technology (1996)

4. Comai, S., Carughi, G.T.: A behavioral model for rich internet applications. In: ICWE, pp.
364–369 (2007)

5. Coutaz, J.: PAC: An object oriented model for dialog design. In: Bullinger, H.-J., Shakel, B.
(eds.) Human-Computer Interaction: INTERACT 1987, pp. 431–436. North-Holland, Ams-
terdam (1987)

6. ISO. Lotos - a formal description technique based on temporal ordering of observational
behaviour (ISO 8807). Technical report, Information Processing Systems - Open Systems
Interconnection (1989)

7. Lauesen, S.: User Interface Design. A Software Engineering Perspective. Addison-Wesley,
Reading (2004)

8. Lonczewski, F., Schreiber, S.: The FUSE-System: an Integrated User Interface Design Envi-
ronment. In: CADUI, pp. 37–56 (1996)

9. Martinez-Ruiz, F.J., Arteaga, J.M., Vanderdonckt, J., Gonzalez-Calleros, J.M., Mendoza, R.:
A first draft of a model-driven method for designing graphical user interfaces of rich internet
applications. In: LA-WEB 2006: Proceedings of the Fourth Latin American Web Congress,
pp. 32–38. IEEE Computer Society Press, Washington (2006)

10. Navarre, D., Palanque, P., Dragicevic, P., Bastide, R.: An approach integrating two comple-
mentary model-based environments for the construction of multimodal interactive applica-
tions. Interact. Comput. 18(5), 910–941 (2006)

11. Paternò, F., Sansone, S.: Model-based Generation of Interactive Digital TV Applications.
In: MoDELS 2006, Workshop on Model Driven Development of Advanced User Interfaces.
Genova, Italy (2006)

12. Puerta, A.R.: The Mecano Project: Comprehensive and Integrated Support for Model-Based
Interface Development. In: CADUI, pp. 19–36 (1996)

13. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and Implement-
ing Web Applications. Human-Computer Interaction Series, vol. 12, pp. 263–301. Springer,
Heidelberg (2008)

14. Siedersleben, J.: Moderne Software-Architektur. Dpunkt (2004)
15. Szekely, P.A., Sukaviriya, P.N., Castells, P., Muthukumarasamy, J., Salcher, E.: Declarative

interface models for user interface construction tools: the MASTERMIND approach. In:
EHCI, pp. 120–150 (1995)

16. Vanderdonckt, J., et al.: User Interface Extensible Markup Language (UsiXML) 1.8. Univer-
sité catholique de Louvain (February 2007), http://www.usixml.org

17. Vanderdonckt, J., Grolaux, D., Roy, P.V., Limbourg, Q., Macq, B.M., Michel, B.: A design
space for context-sensitive user interfaces. In: IASSE, pp. 207–214 (2005)

http://www.usixml.org

An Ontology-Based Adaptation Framework for
Multimodal Interactive Systems

Matthias Bezold

Institute of Information Technology, University of Ulm, Germany, and
Elektrobit Automotive GmbH, Erlangen, Germany

matthias.bezold@uni-ulm.de

Abstract. One approach for improving the usability of interactive systems is
adapting them to user behavior, which can be accomplished by adaptation rules.
The advantage of rules is that they are explicit and intuitive, but their expressivity
depends on the richness of the underlying data model. In this paper, a framework
for the adaptation of interactive systems is presented that relies on a uniform
ontology-based information representation, for instance for the system and the
user model. Such a description can then be employed by the adaptation rules.
By adding semantic information, the scope of the rules is widened. Moreover,
special emphasis is put on the dynamic aspects of interactive systems, mainly the
interaction of the user with the system and system events. Exemplary rules used
in an interactive TV prototype illustrate this framework.

Keywords: Adaptive interactive systems, Knowledge base, Ontology, Interactive
systems engineering, Rule-based adaptation.

1 Introduction

User groups of interactive systems become more and more diverse. For instance, home
entertainment systems or automotive infotainment systems are operated by old and
young, well-educated and uneducated people, who have different capabilities and ex-
pectations toward the systems. Therefore, there is a need for approaches to create sys-
tems usable by a wide range of different users. Making these systems adaptive to each
individual user is a solution that has been a matter of research for many years [1,8].
Adaptive systems observe the user and improve themselves by deriving adaptations
from the user’s behavior.

There are numerous standards for the definition of interactive systems, such as
UIML1 or XUL2 for graphical and VoiceXML3 for speech-based systems, and even
more research projects. But not all of them are apt for multimodal systems, which can
be controlled by more than one modality at the same time. Statecharts [7], also known
from the Unified Modeling Language (UML)4, offer a sound formalism to describe both

1 User Interface Markup Language (UIML): http://www.uiml.org/
2 XML User Interface Language (XUL): http://www.mozilla.org/projects/xul/
3 VoiceXML: http://www.w3.org/TR/voicexml20/
4 Unified Modeling Language (UML): http://www.uml.org/

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 205–212, 2008.
c© IFIP International Federation for Information Processing 2008

206 M. Bezold

graphical and speech-based systems. While there are more sophisticated descriptions
for instance for speech dialogue systems, such as frame- or agent-based approaches (cf.
[9]), these are intended for speech-based systems only and not usable for graphical sys-
tems. A statechart model consists of a number of hierarchical states and event-triggered
transitions connecting these states. Graphical components, composed of a hierarchy of
graphical elements, and speech components, consisting of speech output and grammars
for speech input, are attached to states and activated when the respective state is en-
tered. For this work, the statechart-based commercial modeling tool EB GUIDE Studio
[5] was extended by an adaptation framework. The tool includes a simulation compo-
nent, which is used as a dialogue manager.

In order to perform appropriate adaptations in interactive systems, an adaptation
framework is required for the development of prototypes and deployed systems. In this
work, an adaptation framework is presented that employs rules to define the adapta-
tions. These rules operate on information stored in a knowledge base that describes the
system and the user. Special emphasis is put on the dynamic parts of the system, which
play a significant role in interactive systems, i.e., the interaction of the user with the
system and system events.

This paper is structured as follows. First, Section 2 introduces ontologies and how
they are used to create a uniform description of all information relevant for the adapta-
tion. Next, the use of rules on top of the knowledge representation to describe adapta-
tions is discussed in Section 3. Finally, related work is presented in Section 4 and future
work is outlined in Section 5.

2 The Semantic Layer

In rule-based adaptive systems, the adaptation rules have to rely on the information
provided by the underlying data model. Therefore, the more information is provided
by the data model, the more powerful and comprehensive the adaptation rules can be.
Moreover, a common representation for all data is needed to make it available to the

Fig. 1. The architecture of the adaptation framework comprises a knowledge base layer and adap-
tation rules on top of it. Adaptation rules are triggered by the interaction of the user with the
system.

An Ontology-Based Adaptation Framework for Multimodal Interactive Systems 207

adaptation rules in a uniform way. For this purpose, a semantic layer covering all neces-
sary information was added on top of the interactive system. The different components
of the framework architecture shown in Fig. 1 are discussed in the following sections.

Since the information used by the adaptation rules has to be available at runtime of
the system, a formalism with extensive instantiation support is required for the knowl-
edge representation. The Web Ontology Language (OWL)5 provides, in addition to
class definition constructs, support for the dynamic instantiation of the models by means
of individuals. Hence, OWL is employed in this work by means of the Jena framework6,
a Semantic Web library.

2.1 Ontologies

An ontology is a description of a certain domain, which is expressed as a hierarchy
of classes covering all relevant parts of a domain. Classes have a set of properties,
which can either be primitive types, such as a string or a number, or references to other
individuals. Individuals are stored as so-called triples, which consist of a subject (an
individual), a predicate (a property), and an object (a primitive value or another individ-
ual). For instance, the name “Welcome” of the state with the ID “State42” is described
through the “hasName” property by the following triple:

(State42 hasName ‘‘Welcome’’)

A knowledge base consists of a set of classes and a number of instances of these
classes. In the following sections, the different models contributing to the knowledge
base are presented and the creation of instances of these models is discussed.

2.2 The Models – System, User, Adaptation, and Interaction Model

As a basis for intuitive and powerful adaptation rules, information about different as-
pects of the system is required, comprising information about the system, the user and
the user’s system configuration, the interaction of the user with the system, and in-
formation about possible adaptations. Each of these areas is implemented as a model
consisting of a set of OWL classes with a number of properties. Most of these classes
can be reused for different systems, only application-specific classes, such as annotated
information or the interaction, have to be defined for each system.

The system model is a technical description of the system, comprising the statechart
model and a description of the graphical and speech components. Moreover, to further
enhance the scope of the knowledge base, additional semantic information can be an-
notated to the model. For instance, all elements, e.g. states, buttons, or speech output
prompts, have a “type” property that describes their purpose, such as “help”.

The user model describes the different users of the system. On the one hand, it com-
prises factual information about the user, such as name or preferences. On the other
hand, the user model covers the configuration of the system for the user, e.g. whether
certain entities are enabled. Since only the user model can change during the execution
of the system, only changes to the user model have to be stored.

5 Web Ontology Language (OWL): http://www.w3.org/2004/OWL/
6 The Jena framework: http://jena.sourceforge.net

208 M. Bezold

The interaction model describes the interaction of the user with the system by defin-
ing interaction patterns out of low-level system events. These low-level events can be
state changes in the statechart model, dialogue manager events, input device events
(e.g., remote control or input button), or speech input from the speech recognition sys-
tem. All events have parameters for additional information, such as the name of the
button for input device events, which can be used in the rules.

The interaction patterns are not part of the ontology, but are described by means
of a Deterministic Finite Automaton (DFA). Sequences, repetitions, and alternatives
combine low-level events or again other patterns into interaction patterns. For instance,
a menu entry selection by moving the cursor up and down and pressing the OK button
can be described by the pattern “(button up OR button down)* AND button OK”, with
the “*” denoting a repetition. Context information can be used to refine interaction
patterns and to connect them to different parts of the system, e.g. differentiating between
selections in different menus of the system.

The adaptation model describes the adaptations that can be applied to the system.
Adaptations are expressed as rules, which are discussed in the following section.

2.3 Instantiating the Models

In order to use these models at runtime of an interactive system, they have to be pop-
ulated with instances of the model classes, called individuals. For this purpose, special
adapter modules are used to initialize the knowledge base accordingly when the system
starts. For instance, the “Statechart Ontology Adapter” creates a knowledge base indi-
vidual for every state in the system definition and fills the properties accordingly, such
as the name, whereas the “User Model Adapter” loads information about the users from
the user model.

The dialogue manager consults the knowledge base during the execution of the sys-
tem. For instance, if a state or a speech output prompt is disabled in the knowledge base,
it will be skipped. Therefore, the definitions of the respective elements do not have to
be updated and the information needs to be stored only in the knowledge base.

3 Adaptations

This section discusses how adaptations are performed. Adaptation rules can exploit the
the information provided by the knowledge base. Contrary to statistical approaches,
rules are well-predictable and explicit, which is especially important for graphical
systems.

3.1 Adaptation Rules

Rules are used for two different purposes. First, the information in the knowledge base
can be inferred from the interaction of the user with the system, e.g. by defining a
rule that updates the current state of the dialogue system from (low-level) state change
events. Second, adaptations can be performed by rules, e.g. by disabling certain ele-
ments of the system. Adaptation rules are connected to entries of the adaptation model
in order to make this information part of the knowledge base.

An Ontology-Based Adaptation Framework for Multimodal Interactive Systems 209

The rules used in this framework consist of three parts. First, the event part is used to
define a trigger for a rule by connecting the rule to a pattern from the interaction model
(e.g. menu selection) or a low-level event (e.g. a state change). If rules have no trigger,
they are executed at predefined points, such as system startup or user change. Second,
the condition part can be used to define additional criteria that have to be fulfilled to
execute the body of the rule. Third, the action part contains the rule body, usually con-
sisting of knowledge base updates.

Knowledge base updates are composed of two parts, the query part and the update
part. Since the Jena rule engine only supports monotonic updates, i.e., does not support
modifications of existing triples, and the non-monotonicity is important to allow updates
to the user model, a custom rule system is used. The query part of the rule is transformed
into a SPARQL7 query. Parameter values from the event, e.g. the name of the new state
for a state change event, are passed to the query as bound variables. The update part
is a list of triples that will either be updated in the knowledge base determined by the
subject and the predicate, or created if no matching triple exists. Updates can contain
functors that perform computations, such as incrementing a value.

The evaluation of rules is carried out within a transaction, performing all updates to
the knowledge base only after all triggered rules have been evaluated. This is necessary
for consistency reasons. For instance, if rule A updated a value read by rule B, which is
evaluated after A, the (implicit) order of execution would be relevant. But making the
order explicit would increase the complexity unnecessarily.

3.2 Exemplary Adaptation Rules

Two adaptation rules are shown in this section, updating the knowledge base and per-
forming a simple adaptation respectively. The rules in the actual system use XML as a
notation, but for clarity reasons, a simplified notation is used. Variable names start with
a “?”, properties with a lower case character, and instances with an upper case character.
The examples are taken from an adaptive home entertainment model that includes an
electronic program guide.

In Fig. 2, an update rule is shown that is triggered when the current state in the
statechart model changes. Therefore, a “state change” event trigger is used. In the ac-
tions part, a query is defined that retrieves the state element in the knowledge base

events: state change: ?name
conditions: none
actions:

query:
(?state hasName ?name)
(?status isAboutEntity ?state)
(CurrentSession hasUser ?currentUser)
(?status isAboutUser ?currentUser)
(?status hasUseCount ?oldUseCount)

updates:
(?status hasUseCount addOne(?oldUseCount))

Fig. 2. Knowledge base update rule that increments the use counter of a state in the user model

7 SPARQL Query Language: http://www.w3.org/TR/rdf-sparql-query/

210 M. Bezold

events: pattern: "UserIsLost"
conditions: none
actions:

query:
(CurrentSession hasUser ?currentUser)
(?element hasType DialogueType_Help)
(?status isAboutEntity ?element)
(?status isAboutUser ?currentUser)

updates:
(?status isEntityEnabled "true")

Fig. 3. An adaptation rule that enables “help” elements (states, speech output prompts, etc.) if a
user is lost (defined by the interaction pattern “UserIsLost”)

determined by the name of the state (?name), selects the current user, her status triple
for the state, and the old use count. The “updates” section updates the use count, which
is computed from the old value using the “addOne” functor.

A (simplified) adaptation rule is given in Fig. 3. This rule enables help when a
user seems to be lost, which is defined by the interaction pattern “UserIsLost”, e.g.
defined as “random scrolling” (not shown). “Help elements” are defined by annotations
to the system model, which are available through the value “DialogueType Help” of the
“hasType” property.

4 Related Work

Ontologies have been used in multimodal systems for other purposes than adapations,
such as supporting semantic coherence checking [6] in the SmartKom project or domain
reasoning in the dialogue manager [4] in the Talk project. Moreover, ontologies have
been used for modeling interactive systems. In [10], an ontology is used in addition
to UML in the development process of multimodal interactive systems. The high-level
model description is only available at design time to provide development support and
for platform mapping, but not at runtime of the system.

Sophisticated adaptation architectures have been presented in the domain of adaptive
hypertext systems. A formal definition of an adaptive hypermedia system is presented
in [3]. The adaptation component consists of a set of rules expressed as first-order logic
statements using a language called TRIPLE. The adaptations rely on a semantic anno-
tation of the document space. Another framework for adaptive systems in presented in
[2]. It relies on OWL for describing the system and the domain and the SWRL rule
language to express the adaptations. The ODAS domain ontology [11] is used in con-
junction with adaptation rules in an adaptive hypertext portal. The authors reason that
rules provide a better transparency and controllability for users than statistical adapta-
tion methods. The ontology provides a knowledge foundation for the adaptation rules
and contains different models, such as a system model, a task model, and a resource
model.

These adaptation architectures have only been applied to hypertext systems, but not
to interactive systems in general, which are richer with regard to their interaction pos-
sibilities. Hence, this approach is better suited for interactive systems, since interaction
patterns and system events can directly be connected to the adaptations rules.

An Ontology-Based Adaptation Framework for Multimodal Interactive Systems 211

5 Conclusions and Future Work

This work presented a framework for adapting dialogue systems to user behavior that is
based on a knowledge base and adaptation rules. The knowledge base, which is defined
by a set of OWL models and populated by means of adapter components, covers all
aspects that are relevant for the adaptations. The expressivity of adaptation rules benefits
from this information. Since the interaction of the user with the system is a vital part
of adaptive systems, special emphasis was put on this issue by defining interaction
patterns that trigger rules. These interaction patterns are defined out of low-level system
events, such as input device or speech input events. Exemplary rules for knowledge base
updates and adaptations were given to illustrate the use of this framework.

There are two main directions for future work. First, the description of the user in-
teraction can be improved by adding a task model and connecting it to the interaction
model. A task model describes what a user can do with an interactive system on an
abstract task level. Thus, the expressivity of adaptation rules can benefit from this ad-
ditional information. Second, the development of adaptive systems can benefit greatly
from defining a list of adaptations and formalizing them as adaptation patterns. Based
on existing research on human-computer interaction patterns [12], concrete adaptation
patterns can be included in the ontology and connected to the interaction and task mod-
els. These patterns can then be added to the model by the system designer or executed
automatically.

References

1. Browne, D., Totterdell, P., Norman, M. (eds.): Adaptive User Interfaces. Academic Press
Ltd., London (1990)

2. Carmagnola, F., Cena, F., Gena, C., Torre, I.: A Multidimensional Framework for the Repre-
sentation of Ontologies in Adaptive Hypermedia Systems. In: Bandini, S., Manzoni, S. (eds.)
AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 370–380. Springer, Heidelberg (2005)

3. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: Towards the Adaptive Semantic Web. In: Bry,
F., Henze, N., Małuszyński, J. (eds.) PPSWR 2003. LNCS, vol. 2901, pp. 51–68. Springer,
Heidelberg (2003)

4. Garcia, G.P., de Amores Carredano, J.G., Portillo, P.M., Marin, F.G., Marti, J.G.: Integrating
Owl Ontologies With a Dialogue Manager. In: Procesamiento del Lenguaje, pp. 153–160
(2006)

5. Goronzy, S., Mochales, R., Beringer, N.: Developing Speech Dialogs for Multimodal HMIs
Using Finite State Machines. In: 9th International Conference on Spoken Language Process-
ing (Interspeech), CD-ROM (2006)

6. Gurevych, I., Porzel, R., Malaka, R.: Modeling Domain Knowledge: Know-How and Know-
What. In: Wahlster, W. (ed.) SmartKom - Foundations of Multimodal Dialogue Systems, pp.
71–84. Springer, Heidelberg (2006)

7. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

8. Jameson, A.: Adaptive Interfaces and Agents. In: Human-computer Interaction Handbook,
1st edn., pp. 305–330. Erlbaum, Mahwah (2003)

9. McTear, M.F.: Spoken Dialogue Technology: Towards the Conversational User Interface.
Springer, London (2004)

212 M. Bezold

10. Obrenovic, Z., Starcevic, D., Devedzic, V.: Using Ontologies in Design of Multimodal User
Interfaces. In: Rauterberg, M., Menozzi, M., Wesson, J. (eds.) INTERACT 2003. IOS Press,
Amsterdam (2003)

11. Tran, T., Cimiano, P., Ankolekar, A.: A Rule-Based Adaption Model for Ontology-Based
Personalization. In: Wallace, M., Angelides, M.C., Mylonas, P. (eds.) Advances in Semantic
Media Adaptation and Personalization. Studies in Computational Intelligence, vol. 93, pp.
117–135. Springer, Heidelberg (2008)

12. van Welie, M., van der Veer, G.C.: Pattern Languages in Interaction Design. In: Rauterberg,
M., Menozzi, M., Wesson, J. (eds.) INTERACT 2003. IOS Press, Amsterdam (2003)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 213–220, 2008.
© IFIP International Federation for Information Processing 2008

Some Thoughts about the Horizontal Development
of Software Engineers

Anke Dittmar and Peter Forbrig

Rostock University, 18055 Rostock, Germany
{anke.dittmar,peter.forbrig}@uni-rostock.de

Abstract. We argue that current patterns of thought and action in software en-
gineering and in HCI will simply be reproduced if we are not able to become
more aware of their impact on our own behaviour, attitudes and values. We
suggest that a more balanced and intertwined vertical and horizontal develop-
ment of people can contribute to human-centred design processes. The case
study presented describes a modest attempt to demonstrate this with future
software engineers and managers. Though not a spectacular example, it shows a
small tight network of activities and roles over time with feedback loops to fa-
cilitate deep reflection, mutual awareness and respect. The paper supports the
idea of design as an ongoing intervention process beyond problem setting and
problem solving.

1 Introduction

Diaper points out in [1] that “HCI is most closely related to the computing field of
software engineering” and that “no distinction should ever have been made between
software engineering and HCI because both are engineering disciplines concerned
with the same types of systems and their difference is merely one of emphasis, with
software engineering focusing more on software and HCI more on people.” However,
“integration of software engineering and user-centred design” is the first topic men-
tioned in the call for papers of this conference. Obviously, there is still a gap between
the two approaches. The title HCSE even goes a step further by suggesting not to
focus on users of technology but on humans.

Why is software engineering not inherently human-centred? One explanation is
that there is always a lag between the invention of new technologies and the learning
of how to use them in a ‘reasonable’ way. This is also reflected in HCI. According to
Cockton, its focus has expanded from being largely system-centred up to the 1970s,
then user-centred in the 1980s, context-centred in the 1990s, and now, having a value-
centred focus [2]. Appropriate design approaches have been developed since then to
improve the design of interactive systems (task-based design, participatory design,
design rationale, reflective design, end user development,...). On the other hand, the
engineering side of system development is often underestimated today (as stated e.g.
in [3]). While ten or twenty years ago users and other stakeholders were often seen as
not able to contribute to the design process (and this view might still prevail in soft-
ware engineering) the HCI field tends to consider now interaction programmers as

214 A. Dittmar and P. Forbrig

mere executors of other people’s ideas. Maybe this is a kind of counter effect. How-
ever, it also shows how difficult it is to really accept contributions from different
fields and different people. It is one thing to understand the rationale behind a new
approach. It is another thing to internalize those ideas and to bring them into balance
with existing habits of thought and action. To give another example, we still struggle
to find a balance between so-called formal, semi-formal, and informal approaches and
representations, and we are often not even aware that they can share similar assump-
tions which, perhaps, should be questioned first.

What does it mean to do human-centred software engineering, or maybe value-
centred design or sustainable design? Why, for example, does Thimbleby give at the
beginning of his book about principles of interaction programming [3] explanations
about interests behind short production cycles, about toxic waste, time pressure on
programmers and its consequences? Blevis states in [4] that the material effects of
current practices of designing and using interactive systems do not reflect a sustain-
able lifestyle. He proposes several design principles to increase our understanding of
the environmental impact of interaction design. However, he also suggests “that faith
in technology as usual cannot succeed, and that new thinking is critical to our sur-
vival.” All this is not new. Einstein is frequently cited (e.g. in [5]): “The world we
have created is a product of our thinking, it cannot be changed without changing our
thinking”.

In this paper, we briefly describe a series of tutorials in requirements engineering
with graduate students of software engineering and business informatics (Sec. 2). We
will refer to it as a case study though it was not planned as such. However, its specific
conditions and its evolution triggered the reflective analysis, and the suggestions for
learning practices, which are presented in Sec. 3. We argue that it is not enough to
reflect on external products of design activities. Current patterns of thought and action
will simply be reproduced if we are not able to become more aware of the impact of
actual practices on our own behaviour, on our attitudes and values. We suggest that
deep reflection and a more balanced and intertwined vertical and horizontal develop-
ment of people can contribute to more effective human-centred design processes.
Though we do not ground this work in a sound qualitative methodology but rather
remain on a descriptive level we think that our reflective analysis can contribute to a
more sustainable software engineering culture in which design is understood as an
ongoing intervention process beyond problem setting and solving.

2 Case Study

The case study is about tutorials supplementing the requirements engineering lectures
(RE) at Rostock in summer 2007. Participants were 15 graduate students of software
engineering and business informatics. They were familiar with programming, formal
specifications and with software engineering methods. They also had done an intern-
ship. The focus of such tutorials is on the early stage in a user-centred design process.
Their nature is partly shaped by the following constraints. The participation is op-
tional. The main interest of most students is neither in RE nor in HCI. Even in their
industrial training, many had no experience of any deep requirements analysis. Stu-
dents get no marks or points and their participation is not a prerequisite for other

 Some Thoughts about the Horizontal Development of Software Engineers 215

courses or examinations. Hence, the focus of a tutorial is more on the activities in the
11-12 weekly meetings (each about 90 minutes) and less on the production of precise
specification documents (though documents are produced). We do not insist on train-
ing in particular methods by using specific, independent examples. Instead, a single
‘problem’ is used throughout the semester. Some of the methods and techniques
which were introduced in lectures are chosen to approach the problem. They are
mostly applied in a sketchy way. In addition, the meetings are used to reflect personal
activities, to see improvements and alternative approaches, and to discuss pros and
cons of the artifacts in use.

The reported case study was about analysing the software engineering course (SE)
for second-year students at our department in order to find out how to better support
student projects. Both authors are involved in the SE course as well. We could ask our
colleagues and students to ‘act’ as participants. We also chose this topic because of
the obviously different, and partly conflicting, views of the stakeholders. The follow-
ing description is based on material created during the tutorials and on the notes of the
tutor. Sometimes the first person is used to emphasize that it is the perspective of the
tutor (one author).

First Meeting
The students were asked to work in groups and develop initial ideas of how to tackle
the analysis. Most participants started by reflecting their own past experiences with
the SE course. Some students discussed, for example, whether the goal of a project is
to learn about object-oriented software development or to work in a team. One of
them said: I am sure, if you went to one of the teachers right now to ask them about
the goals of these projects they would make up a story. The whole group agreed on
conducting semi-structured interviews with the teaching staff involved and with sec-
ond-year students. Two students were asked to prepare a test interview with the tutor
(who also was SE tutor). Eleven students were asked to make appointments with the
teachers.

Interviews
The test interview in the second meeting might have helped to make sense of the
grading scheme or to understand better the work of tutors. However, it was also obvi-
ous that the questions had to be revised to get more insights. The revised list guided
the interviews of the other four tutors and the lecturer. Generally, all interviews were
recorded. They were transcribed (with differences in detail). We used Stud.IP (a
learning management system with wiki support at our university) to store and access
audio files and all other documents. In the third meeting, we listened to a 40-minute
interview with one of the tutors. In the subsequent meetings only transcriptions were
used. We did not perform a thorough analysis. Instead, we rather used the interviews
for a kind of ‘informed dialogue’ between ourselves about the SE course and about
project work in particular.

The tutors were asked to help us contacting one or two of their project groups. In
another meeting we divided into three groups to prepare a list of questions for stu-
dents. One group wrote down ‘ad hoc’ questions. Another group was asked to develop
a simple task model from the student’s perspective before writing down their ques-
tions. The third group created a list of artifacts used in the SE course and developed
questions on this basis. Then, all questions were gathered, selected, and grouped.

216 A. Dittmar and P. Forbrig

Finally, four interviews with at least three students of a group (and two interviewers)
were conducted. In one case, the whole group was present. The interviews took from
40 to 70 minutes. At that time, I suggested that we should try to organize a ‘work-
shop’ at the end of the RE course.

Brainstorming
The following list shows an extract from suggested improvements at the ‘brain-
storming session’ in the 7th meeting. Based on this list, we planned the last four meet-
ings. The group decided to invite teachers but not students for a final workshop
“SE 2.0”. All invited people were present.

1. Registration: choice of project topic, group formation,
2. More relations between documents of a project,
3. Management tool for teaching staff,
4. Announcement of the SE course, e.g. invitation of the first-year students to

the final project presentations,
5. More milestones in the second phase of the project (summer semester),
6. More exchange between project groups, e.g. mutual testing, code

reviewing...

Specifying Requirements
In the 8th meeting, we began to explicitly describe requirements. We used different
techniques such as use cases and paper prototypes. Prepared material facilitated the
meetings. For example, an entity-relationship diagram encouraged consideration of
flexible graduation schemes, and helped to find requirements on a management sys-
tem for tutors. Fig. 1 shows the revised version of the “rough QOC” developed during
the discussion about future registration practices for student projects.

3 A Reflective Analysis

Development is often understood as ‘vertical’ improvement of individuals though
supported by social interaction and collaboration [6]. However, vertical development
also needs a horizontal movement across social worlds. The T-model (e.g. [7]) is
well-known but not necessarily practised in education. The ⎪ can stand for the vertical
and the ⎯ for the horizontal development. Engeström mentions ‘contact zones’ as
places where people and ideas from different cultures meet, collide and merge. “It is
this inability to ever understand another world that has great developmental signifi-
cance” [6]. Participatory design supports this idea. Authors like Schön initiated a
transformation of design by promoting a “reflective practice” with argumentation
processes and an intertwined goal shaping and problem solving [8].

Sec. 2 may have already shown that the way we organize the tutorials is rooted in
these ideas. They can be seen as complementing ‘classrooms’ and project work. Stu-
dents are neither evaluated nor forced to create a ‘visible product’. The idea is to
support a horizontal development but with a ‘starting point’ which is familiar to the
participants (requirements engineering is part of software development). There are
few pre-defined roles and goals. There is no pre-established agenda. The idea is to
create a continuous conversation about current and envisioned practices in a certain

 Some Thoughts about the Horizontal Development of Software Engineers 217

Fig. 1. QOC diagram (8th meeting)

working system. A conversation which is guided by early design techniques, most of
them well-known or even developed in the HCI field. The focus is on a continuous
experience and less on the creation of ‘perfect’ artifacts. Mistakes are allowed. It is
also allowed to use suggested techniques in a sketchy way. Perhaps this facilitates a
combination of child-like playfulness and adult-like rationality as recommended in [9].

The case study might be used to illustrate several points. For example, none of the
students was trained in conducting interviews. Of course, we made mistakes. The first
tutor showed some surprise when students started to record the interview. We never
forgot again to ask and to emphasize that we don’t want to ‘test’ the interviewees.
Suggestive questions were asked. One interviewer asked a tutor: Do you REALLY
read the documents of student’s project? What can he answer? As mentioned, inter-
views were not thoroughly analyzed. However, it is possible to hand out and discuss a
description like the following (it only takes five minutes). “The interviews were re-
corded and transcribed. Analysis included open coding for thematic analysis, selective
coding and constant comparison between analysis products and raw data...”. Students
can recognise themselves in the description but also see that much more knowledge,
experience, and work(!) is required. Perhaps, this helps to create a deeper understand-
ing of other stakeholder’s activities, an appreciation of diverse viewpoints, and mutual
respect.

In the specific study described in Sec. 2, the authors were responsible for the RE
course. Participants were graduate students in software engineering and business
informatics. They analysed a basic course in software engineering with activities of
second-year students, the authors, and other tutors. Most of them attended this basic
course some semesters ago. Hence, students were teachers and teachers were learners
in a way. Who were the users and who the developers, who the observers and who the
observed? As it turned out, a ‘frame’ was set up which was convenient to support.

218 A. Dittmar and P. Forbrig

- Multiple, sometimes blurred roles and actions with multiple motives,
- Intertwined vertical and horizontal development,
- Deep reflection,
- Mutual respect and shared understanding,
- The idea of design as ongoing intervention.

Vertical and Horizontal Development
SE projects are basically guided by the waterfall system life cycle. In a way, the older
students ‘observed’ their own activity of two or three years ago but now through the
lenses of their increased knowledge and skills in software engineering. Some of the
suggested early design techniques are not yet applied in the ‘real world’ of software
development. They require an understanding and skills which are often not conveyed
in ‘traditional’ software engineering. The case study might be a modest example of an
intertwined vertical and horizontal development. The ⎯ in the above mentioned T-
model is deeply related to the ⎪ and yet different ways of thinking and acting are
needed.

Deep Reflection
In [10], ongoing and off-loop reflection is required for a professional participatory
design process. Off-loop reflection is seen as an opportunity to reify and discuss past
experiences, and to establish a firm link to possible future practices. As already de-
scribed, both forms of reflections were evoked. Two small examples from the 8th
meeting about new registration practices for projects may serve for illustration. One
group of participants applied use cases [11], the other used the concept of “rough
QOC” [12]. Then, we looked at the notes of both groups to compose a proposal. The
‘nature’ of the approaches literally emerged. The use case with its focus on action
sequences looked like a ‘first-best solution’ in comparison with the QOC diagram.
Though the three questions in Fig. 1 seem to be trivial they don’t have simple an-
swers, let alone a best one. However, look at Fig. 1 again to understand the following
situation in the QOC discussion (written from the tutor’s perspective who ‘served’ as
QOC scribe to record the discussion): One student said that there are fewer conflicts
and more continuous work if students can form their own groups. They know each
other, their skills and so on. So, I drew a solid line between the appropriate option
and the criterion. Then, another student said that he is not sure about that argument.
It could also be a handicap to be friends and work in a team. I changed to a pencil
and drew a dashed line between the same option and the same criterion. After two
more arguments I drew a big question mark over this part of the paper. A student
asked: Are we allowed to do it?! I said: Of course. This is a sheet of paper and we
write and draw what we want to. This led us to a 10 minutes ‘philosophical’ talk
about modeling, programming, the need for intertwining different activities in soft-
ware design and so on. One student described, for example, some of his problems
with modeling. There is a term for that: premature commitment to structure. This
situation may reveal much about how we teach and live with cognitive artifacts like
methods. Is it allowed to draw a circle in a diagram which normally consists of rec-
tangles and arrows? Or, is it allowed to perform step 4 of a method before step 2?
And doing this without rejecting the whole method? It looks like a paradox. On the
one hand, there is often rejection of methods or rules, on the other hand, a kind of
faith in them.

 Some Thoughts about the Horizontal Development of Software Engineers 219

Mutual Respect and Shared Understanding
We think one reason why the students became engaged in the analysis was that they
were not detached observers. For example, the interviews were sometimes more like
an exchange of experience and knowledge. One interviewer explained to a group who
didn’t use a version management system what it is good for. Of course, the partici-
pants were more experienced and had better understanding than the second-year stu-
dents. However, they were still students and saw us as teaching staff though in a more
relaxed way. We think there was much potential in this tension. The group started to
see their own assumptions and was sometimes a kind of mediator. This might be illus-
trated by the following interview situation: The students started to complain about a
tutor (not theirs). The interviewer said he notices it but it has no consequences for
anyone. The students said that they would like to let us know about it. The interviewer
said: “Okay, this analysis is about improving the SE course. And teachers who are
not committed will be chained to the wall and whipped. You are all invited to come.”
Laughter and the interview could continue.

Design as Ongoing Intervention
Even in a “reflective design practice” with an intertwined goal shaping and problem
solving the problem is still the main underlying concept - whether wicked or tame. In
contrast, the idea of design as an ongoing process of a double intervention “in the
Earth’s cycles and processes, and simultaneously in the human culture of needs and
techniques” [13] may be better supported by Bohm’s idea of embedding problem
solving into awareness of paradoxes. What is called for in the case of a paradox is not
some procedure that solves the problem. Rather, it is to pause and to give attention to
it in order “to bring the root of the paradox into awareness” [14]. Bohm suggests that
the treatment of paradoxes as problems and the attempt to solve them does not con-
tribute to their dissolving but results in “ever-increasing confusion”. In the case study
presented there are paradoxes between education and practice, between the desire of
students to get good (individual) marks and yet to learn teamwork, between methods
and actual situations... Take note that the brainstorming session was in the second half
of the tutorial. We think that the relatively long first phase was an important experi-
ence for the participants. It helped to suspend activities of problem solving and to
become aware of paradoxes. Perhaps this resulted in more ‘modest’ suggestions for
changes at the workshop. Some of them are considered in the actual SE course, some
of them were the basis for actual SE project topics.

4 Summary

“[T]hrough centuries of habit and conditioning, our prevailing tendency is now to
suppose that ‘basically we ourselves are all right’ and that our difficulties generally
have outward causes, which can be treated as problems” [14]. The paper is not about
another method ‘to bridge the gap’ between SE and HCI. It looks instead for ways to
facilitate a cooperative internalisation of non-familiar ideas and perspectives in order
to question and change one’s own practices. The case study presented describes a
modest attempt to demonstrate this with future software engineers and managers.
Though not a spectacular study it is a small example of a relatively tight network of
activities and roles over time with feedback loops supporting deep reflection, mutual

220 A. Dittmar and P. Forbrig

awareness and respect (including self-awareness and self-respect). We are not able to
validate our suggestions but we would like to encourage others to look for ‘seeds’ for
adaptations in their own (design) attitudes and activities. Human-centred software
engineering has to be treated as paradox, not as problem. There are no answers in
terms of solutions (or methods). Design concepts and methods like those mentioned in
this paper are artifacts that can guide this process. However, they cannot free humans
from the need to be aware of the actual situation and the need to adapt it in a sensitive
way. This includes the questioning and revision of the very same artifacts.

References

1. Diaper, D.: Understanding Task Analysis for Human-Computer Interaction. In: Diaper, D.,
Stanton, N.A. (eds.) The handbook of task analysis for human-computer interaction. Law-
rence Erlbaum, Mahwah (2004)

2. Cockton, G.: A Development Framework for Value-Centred Design. In: Proc. CHI 2005.
ACM Press, New York (2005)

3. Thimbleby, H.: Press On: Principles of interaction programming. MIT Press, Cambridge
(2007)

4. Blevis, E.: Sustainable Interaction Design: Invention & Disposal, Renewal & Reuse. In:
Proc. CHI 2007. ACM Press, New York (2007)

5. Ackoff, R.L.: Transforming the Systems Movement. In: ICSTM 2004 (2004),
http://www.acasa.upenn.edu/RLAConfPaper.pdf

6. Engeström, Y.: Development as Breaking Away and Opening Up: A Challenge to Vygot-
sky and Piaget. Swiss Journal of Psychology 55, 126–132 (1996)

7. Dix, A.: Controversy and Provocation (Keynote). In: Proceedings of HCIE 2004, The 7th
Educators Workshop: Effective Teaching and Training in HCI (2004)

8. Schön, D.A.: The reflective practitioner: how professionals think in action. Harper Collins
(1983)

9. Dix, A.: Being playful: learning from children. In: Proc. IDC 2003: Interaction Design and
Children. ACM Press, New York (2003)

10. Bødker, S., Iversen, O.: Staging a Professional Participatory Design Practice - Moving PD
beyond the Initial Fascination of User Involvement. In: Proc. NordiCHI (2002)

11. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2001)
12. Buckingham Shum, S., MacLean, A., Bellotti, V., Hammond, N.: Graphical Argumenta-

tion and Design Cognition. Human-Computer Interaction 12(3) (1997)
13. Knapp, R.: Sustainable Design, http://diac.cpsr.org/cgi-bin/diac02/

pattern.cgi/public?pattern_id=798
14. Bohm, D.: On Dialogue. Routledge (1996)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 221–228, 2008.
© IFIP International Federation for Information Processing 2008

Involving End Users in Distributed Requirements
Engineering

Steffen Lohmann, Jürgen Ziegler, and Philipp Heim

University of Duisburg-Essen,
Lotharstrasse 65, 47057 Duisburg, Germany

{lohmann,ziegler,heim}@interactivesystems.info

Abstract. Active involvement of end users in the development of interactive
systems is both highly recommended and highly challenging. This is particu-
larly true in settings where the requirements of a large number of geographi-
cally distributed users have to be taken into account. In this paper, we address
this problem by introducing an integrated, web-based approach that enables us-
ers to easily express their ideas on how the interaction with a system could be
improved. In addition, the user input is contextualized, allowing for highly
structured means to access, explore, and analyze the user requirements.

Keywords: Distributed Requirements Engineering, User Involvement, Global
Software Development, Web-based Participation, Distributed Participatory
Design.

1 Motivation

The active involvement of end users in the analysis and design of interactive systems
has become to be known as Participatory Design (PD) [8][12]. Over the years, a
couple of methods, techniques, and tools have been developed to support PD [2].
However, though most of these approaches work well for co-located stakeholders,
they lack supporting the engineering of interactive systems where needs and desires
of a large number of geographically dispersed users have to be met. As this becomes
increasingly common in a globalized world, PD has to face new challenges. This is
addressed by the emerging research area of Distributed Participatory Design (DPD)
[3] which investigates PD with regard to physical, temporal, and organizational
distribution.

Against the background of DPD, we are working on methods and tools that support
end user participation in distributed requirements engineering within the SoftWiki
project [13]. In the following, we present an approach for the elicitation of user re-
quirements in the evolutionary development of interactive systems. It enables distrib-
uted users to express requirements on basis of their interaction experience. We first
give a brief overview on related work. Then, we describe the overall approach for
distributed elicitation of user requirements, its implementation, and the underlying
model. Subsequently, we provide a short insight into different ways to access, ex-
plore, and analyze the gathered user requirements and into the tools and visualizations

222 S. Lohmann, J. Ziegler, and P. Heim

we are currently working on to support these activities. The paper ends with a short
discussion and an outlook on future work.

2 Related Work

Research regarding the participation of distributed end users in the development of
interactive systems is – next to DPD – mainly conducted under the terms of Distrib-
uted or Global Software Development (DSD, GSD). The majority of the existing
approaches are of a very general nature in that they consider support for as many
stakeholder groups as possible rather than focusing specifically on the end user's ex-
pectations and needs. Furthermore – though the quantity is reduced – most approaches
still heavily rely on physical meetings and direct communication (cp. e.g. ARENA [5]
or DisIRE [4]).

Other attempts try to equip the users with extensive possibilities to annotate or
even design the interface. Moore [10], for instance, proposes the use of GUI elements
without functionality to allow end users to express their requirements: The users are
enabled to create “mock user interface constructions” and augment them with textual
descriptions. However, it cannot be expected that users normally have the time and
skills to develop GUI proposals without any guidance. Thus, this approach is not
feasible in most situations with large, distributed user groups.

A more promising approach for distributed settings is to allow users to express re-
quirements on the basis of an existing application or test prototype. One possibility is
Digital Annotation (DA): Tools such as Annotate!Pro [1] can be used to enable end
users to express requirements intuitively by annotating applications using free-form
drawing and send in a snapshot of their annotations to the developing team. Rashid et
al. [11] present a solution that specifically aims to support end user participation in
requirements elicitation by providing a DA toolset and some predefined templates that
have been developed with the needs of requirements formulation in mind.

Though DPD approaches that are based on DA can be very intuitive, they still re-
quire some effort and skills of the users in expressing their requirements and demand
time-consuming interpretation in the course of analyzing and understanding the anno-
tated screens. The possibilities for structured access or machine readability are very
limited. It is nearly impossible, for instance, to automatically detect similar or identi-
cal requirements. For these reasons, the mentioned approaches do not sufficiently
support settings with large user groups and provide only limited means for developers
to explore, filter, and evaluate the collection of user requirements.

3 Web-Based Elicitation of User Requirements

Our approach focuses on the elicitation of user requirements for web-based systems.
The implementation is seamlessly integrated into the end user's web browser and
provides some advantages compared to stand-alone applications:

1. A contributing user does not have to change the environment. He can express his
requirement immediately when it occurs while interacting with the system.

 Involving End Users in Distributed Requirements Engineering 223

2. Parts of the usage and system context can be captured along with the user require-
ment, allowing for more structured means to analyze and utilize the requirements
as well as a better understanding of their intended meaning.

3. The user is enabled to explicitly point at parts of the interface the requirement
refers to. Thus, requirements can be directly linked to the application structure.

3.1 Scenario and Application

The general idea of our approach is best illustrated by a brief scenario that uses the
application we developed for the elicitation of user requirements (cp. Fig. 1).

1

2

3

4

5

7

6b

6a

Fig. 1. Web-based interface for the submission of requirements

Imagine an employee who uses the company's web-based mail application in her
daily business. While checking her e-mails, the employee misses a feature that she
would like to see realized in one of the next releases, in this case, a possibility to hide
all e-mails that have been detected to be spam at one click. Thus, she presses a button
that is integrated in the user interface of her web browser (1). A pop-up window ap-
pears (2) containing a web form where she enters a description of her requirement (3)
and optionally adds an adequate title (4) and some keywords (5). If her requirement
refers to an element of the visible web page, she does not have to textually describe
the element but can directly point to it as follows: While the pop-up window is
opened, selected elements are highlighted (6a) and can be copied to the web form (6b)

224 S. Lohmann, J. Ziegler, and P. Heim

simply with a click1. Finally, the employee submits her requirement, receives a con-
firmation, the pop-up window closes and she returns to the web application where she
continues to check her e-mails.

The user interface is reduced to its essential elements so that it is immediately un-
derstandable, minimizes user effort and hence encourages participation. In the exam-
ple given, the user does not even have to classify her requirement into a pre-defined
taxonomy or a collection of existing requirements but is simply asked to provide some
meaningful, freely chosen keywords. In order to further ease participation, require-
ments that are identified as similar to the one the user is entering are displayed below
the web form (7)2: That way, the user does not need to formulate a requirement a
second time that already exists. Furthermore, the amount of redundant requirements is
reduced, leading to lower effort in analyzing the requirements.

3.2 Conceptual Model and Gathered Information

The conceptual model underlying our approach is shown in Fig. 2. It is divided into
four parts. As is common in requirements engineering, the basic data consists of a
description and title of the requirement that in our case are formulated by the user,
and an automatically assigned identification (ID). An automatically generated full-text
index of the title and description together with the user added keywords ease access
and are used for searching in the requirements and calculating the similarity measure,
amongst others.

Along with the user input, additional information regarding the usage and system
context is captured. Following Kaltz et al. [6], we break down the usage context into
the facets User & Role, Location, Time, Device, and Task. Technically, this context
data is derived via several mechanisms using header information of the transfer proto-
cols and additional information that is gathered and sent by the web browser plug-in
in combination with user profiles, geolocation, and lookup tables3. The context facet
User & Role takes into account that a user may want to be able to state requirements
out of different roles in some situations – for instance, a director of a company might
also want to express a requirement from his perspective as an ordinary user of the
system.

The Task facet of the usage context is highly related to the concepts System State
and System Pointer that together form the system context. The former expresses that
each user requirement occurs within a specific state of the system that it can be linked
with4. The latter represents elements that the user explicitly refers to when formulat-
ing his requirement (see Sec. 3.1). Depending on the implementation of the web ap-
plication and its internal structure, these general model concepts can be further broken
down and filled accordingly. For instance, if a model-driven web engineering

1 Hyperlinks in the web page are temporarily deactivated for this purpose.
2 The similarity measure is calculated in the background while the user types in her requirement

using asynchronous server requests as well as statistical and linguistic algorithms.
3 Depending on the particular use case, the derived context data cannot be expected to be per-

fectly correct.
4
 The state of the system and usage context when the requirement is entered by the user is,
strictly speaking, not necessarily identical to that when the requirement occurs; but in most
situations this is likely to be the case.

 Involving End Users in Distributed Requirements Engineering 225

approach [9] has been used to develop the application, links between requirements
and parts of the system models can be explicitly set. However, this requires that the
models are accessible by the web browser plug-in at runtime and that the correspond-
ing system state is represented in these models accordingly.

+ : obligatory | a : automatically derived | u : user input | : captured | : inferred

System Context

Usage Context

User & Role Location Time+ Device Task

System State+Keywords Fulltext Index+

Index

Title

ID+

Description+

u
u u a

u

a
a/uaa/u

a/u

a System Pointer

a

User Requirement

Basic Data

Fig. 2. The user requirement is linked to a number of model concepts

Our basic implementation follows a generic approach to determine the system con-
text: The System State is derived from the URL of the corresponding web page and
variables provided by the transfer protocol. The System Pointer consists of the paths
of the selected elements according to the Document Object Model (DOM). Of course,
the expressiveness of relations to the system context is limited in this generic
approach.

As already mentioned, information regarding the task that the user performs when
the requirement occurs might be inferred from the system models to some degree.
Such as in case of the other model concepts, the Task concept can be further broken
down depending on the implementation of the specific use case.

4 Analyzing the User Requirements

The information that is captured along with each requirement provides multiple ways
to access the requirements collection and thus eases its exploration and analysis.
Again, this is best illustrated by an example:

Figure 3a shows a screenshot of a web-based prototype we developed for analyzing
the requirements that are elicited on the basis of the tool and underlying model de-
scribed in Sec. 3. The interface consists of a main view on the requirements collection
and a sidebar containing visualizations that offer various options for filtering the re-
quirements according to the model facets. Two visual filters are implemented in the
current prototype: a map visualization that shows the requirements according to their
geo-coordinates and can be used for location-based filtering, and a tag cloud visuali-
zation that alphabetically lists the user-assigned keywords, each with a size that corre-
sponds to its usage frequency.

226 S. Lohmann, J. Ziegler, and P. Heim

Fig. 3. a) Web interface for the analysis of user requirements, b) Alternative graph visualization

Continuing the scenario outlined in Sec. 3.1, one of the developers of the com-
pany's webmail application is going to define specifications for the next software
release. Assume that the developer is particularly interested in all user requirements
regarding the topic spam that have been stated by the employees working at company
sites in Europe. He thus changes the visible area of the map so that only Europe is
shown. Then, he selects all keywords that deal with the topic spam – in this case he
chooses the synonyms spam and junk – and defines that these keywords should be
interconnected by the logical OR operator. As a result, only requirements are listed
that meet these criteria. Furthermore, the developer can take a look at the contextual
situation as it was when a specific requirement has been entered by an employee. For
this purpose, a pop-up window simulates the presentation of the application according
to the context data that has been captured along with the requirement (e.g., the corre-
sponding web page, the size of the content area, etc.). If references to parts of the web
page were set by the employee (see Sec. 3.1), these elements are highlighted in the
simulated view5.

Besides the map and tag cloud visualization, further filter options are possible ac-
cording to the model presented in Sec. 3.2. Furthermore, we investigate alternative
ways of presenting the requirements collection in the main view. Figure 3b shows a
prototype of a graph visualization that helps the analyst to reveal relationships, simi-
larities, and conflicts between requirements that are otherwise hidden in the
list view.

5 Discussion and Future Work

The presented approach differs from related work in that it is integrated into the user's
web browser. That way, the user does not have to change the environment to express

5 In our current prototype, the highlighting works properly only in cases where the DOM path

to the selected web page elements remains the same.

 Involving End Users in Distributed Requirements Engineering 227

an idea on how the interaction with a web-based system could be improved. The user
input can furthermore be related to the system and usage context. This is possible
mainly due to the fact that web applications are predominantly based on script lan-
guages that are interpreted by the web browser at runtime. However, with the advent
of user interface markup languages for operating systems (e.g., XAML [14]), the
application of a slightly adapted approach is also increasingly feasible outside the web
browser.

We paid special attention to the balancing of our approach by minimizing the effort
for users who express requirements and, at the same time, capturing sufficient meta-
data to enable structured analysis and further processing of the requirements. This is
best demonstrated by the possibility to select interface elements a requirement refers
to (see Sec. 3.1): On the one hand, the user does not have to describe GUI elements
but can simply point at them, and, on the other hand, the developer does not have to
guess what element is meant and can work with the reference, for instance, aggregate
all requirements that have been related to one GUI element.

Generally, the presented approach can be used in all settings where users shall be
enabled to give feedback regarding a web-based system, ranging from feature re-
quests and bug tracking to remote usability testing. The overall aim is to establish a
closer relationship between users and developers in settings with large and distributed
user groups. First tests showed that the general approach and the developed tools are
quickly understood by users. Currently, we are preparing a comprehensive case study
that examines the developed applications within the larger context of the SoftWiki
project.

In order to increase participation and create an awareness of what happens with the
user input, we are investigating different requirements tracking, user feedback, and
gratification mechanisms. In addition, we study how users might discuss, reformulate,
or vote for a requirement that has already been stated by someone else and is identi-
fied as possibly related.

References

1. Annotate!Pro (June 11, 2008), http://www.annotatepro.com/
2. Bødker, K., Kensing, F., Simonsen, J.: Participatory IT Design – Designing for Business

and Workplace Realities. MIT Press, Cambridge (2004)
3. Danielsson, K., Naghsh, A.M., Gumm, D., Warr, A.: Distributed Participatory Design. In:

Extended Abstracts of the 2008 Conference on Human Factors in Computing Systems
(CHI 2008), Florence, Italy, pp. 3953–3956. ACM, New York (2008)

4. Geisser, M., Heinzl, A., Hildenbrand, T., Rothlauf, F.: Verteiltes, internetbasiertes Re-
quirements-Engineering. Wirtschaftsinformatik 49(3), 199–207 (2007)

5. Grünbacher, P., Braunsberger, P.: Tool Support for Distributed Requirements Negotiation.
In: Cimititle, A., De Lucia, A., Gall, H. (eds.) Cooperative Methods and Tools for Distrib-
uted Software Processes, FrancoAngeli, Milano, pp. 56–66 (2003)

6. Kaltz, J.W., Ziegler, J., Lohmann, S.: Context-aware Web Engineering: Modeling and Ap-
plications. Revue d’Intelligence Artificielle 19(3), 439–458 (2005)

7. Kaser, O., Lemire, D.: Tag-Cloud Drawing: Algorithms for Cloud Visualization. In: Pro-
ceedings of the WWW 2007 Workshop on Tagging and Metadata for Social Information
Organization (2007)

228 S. Lohmann, J. Ziegler, and P. Heim

8. Kensing, F., Blomberg, J.: Participatory Design: Issues and Concerns. Computer Sup-
ported Cooperative Work 7, 167–185 (1998)

9. Moreno, N., Romero, J.R., Vallecillo, A.: An Overview of Model-Driven Web Engineering
and the MDA. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:
Modelling and Implementing Web Applications, pp. 353–382. Springer, Heidelberg (2008)

10. Moore, J.M.: Communicating Requirements Using End-User GUI Constructions with Ar-
gumentation. In: Proceedings of the 18th IEEE International Conference on Automated
Software Engineering (ASE 2003), Montreal, Canada, pp. 360–363. IEEE, Washington
(2003)

11. Rashid, A., Meder, D., Wiesenberger, J., Behm, A.: Visual Requirement Specification in
End-User Participation. In: Proceedings of the 1st International Workshop on Multimedia
Requirements Engineering. IEEE, Washington (2006)

12. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. Erlbaum, Hills-
dale (1993)

13. SoftWiki – Research project, funded by the German Federal Ministry of Education and
Research (BMBF). For more information, http://softwiki.de/

14. Extensible Application Markup Language (XAML) (June 11, 2008),
http://msdn.microsoft.com/en-us/library/ms752059.aspx

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 229–236, 2008.
© IFIP International Federation for Information Processing 2008

Concepts for Analysis and Design of Mobile Healthcare
Applications

Joseph McKnight1, Gavin Doherty1, Bridget Kane1,2, and Saturnino Luz1

1 Department of Computer Science, Trinity College Dublin, Dublin 2, Ireland
2 Trinity Centre for Health Sciences, St. James's Hospital, Dublin

Abstract. In complex domains such as healthcare, careful analysis of user re-
quirements is an important aspect of the development process. In recent years,
ethnographic study has become a popular tool for building up an understanding
of the healthcare domain. However, linking observational data with the design
and development process is a challenging problem. A range of conceptual
frameworks have been proposed which can aid in transforming these data into
concrete requirements. In this paper, we argue that the framework and associ-
ated design concepts used will have a strong influence on shaping the outcome
of design, and that the development team should consider carefully which are
most appropriate to the problem they face. We use a case study based around a
patient review process as an illustrative example.

Keywords: Conceptual Analysis, Concepts, Healthcare, Ethnographic Study,
Mobility.

1 Introduction

The healthcare environment raises many challenges for design, with many different
roles and stakeholders involved, safety critical tasks being performed, large volumes
of information, and highly mobile workers carrying out their activities in a variety of
different settings. Standard user-centered design processes can be difficult to apply to
such complex work environments, and while techniques such as participatory design
are useful they are not going to fully address the problem [7].

In recent years, ethnographic studies have become a popular tool for getting to
grips with the complexity of the healthcare environment, with a number of projects
producing ethnographically-informed designs. Take-up has been such that commer-
cially driven initiatives are now making use of these techniques. Typically, an obser-
vational investigation will yield a lot of information on the different users, working
practices, activities as they currently happen, use of artefacts and information. How-
ever such studies do not necessarily produce actual design guidance, and in particular
they are not a sufficient basis for reasoning about the effects of changes on the work,
the workers, and the environment. These are dynamic environments, and are subject
to many external factors, including evolving "best practice", changing regulations and
organizational structures, and continuous upgrading of information systems.

230 J. McKnight et al.

A number of different analytic frameworks have been proposed, which can help to
transform this ethnographically derived information into input to the design process.
Hence teams looking at the development of such information systems are faced with
the choice of which framework to use. In the following sections we argue that this
choice will have a strong effect on shaping the designs which are produced, and will
also impact on the ability to reason about evolution of the overall system in response
to higher level changes within the organisation (for example, the push towards multi-
disciplinary team meetings). The concepts considered in this paper have previously
been applied to the healthcare environment and due to the nature of the environment
many of these have an explicitly mobile aspect.

2 Case Study - Patient Case Review

The case study concerns a large tertiary referral and cancer treatment healthcare facil-
ity, where the cardio-thoracic surgery unit receives 5 to 10 new case referrals per
week. Each new referral must be processed in order to determine the patient’s suit-
ability for surgery. This involves gathering the information needed to discuss the
patient at a multi-disciplinary team meeting (MDTM), which stages (classifies) the
patient’s cancer, followed by an outpatient assessment before deciding if surgery is
required, followed then by the surgery itself and aftercare. Given the large number of
specialist staff that collaborate through the MDTM, it is vital that the necessary tests
have been carried out and reviewed prior to the MDTM. The work of managing the
patients through the surgical process is mainly carried out by the consultant cardio-
thoracic surgeon and specialist oncology coordinator nurse (hereafter referred to as
the coordinator), aided by administrative staff.

The processing of patients is tracked by various paper based artefacts that are
maintained by the coordinator. The artefacts used include paper notebooks with the
most relevant patient information, lists of patients in treatment with status, and a file
with all documents related to the patient. This is necessary because typically patients
in process are not physically located at the hospital ward and may not technically be a
patient of the hospital until outpatient assessment or surgery. Even though patient
treatment is managed from the tertiary referral hospital, scans and tests may be carried
out by proxy at the referring hospital. As a result, the system is highly dependent on
the coordinator and paper based artefacts to function. For example, a patient’s proc-
essing may be on hold until a scan is completed at another hospital or a test result
becomes available. Unless these actions are followed up by the coordinator, using
paper files, notebook and various artefacts, a delay in processing could result, with
potentially serious consequences. While the use of a paper-based system may seem
atypical, the constant evolution of processes means that often workers have to fall
back on ad-hoc methods while they wait for formal structures and technological sup-
port to emerge.

In order to investigate requirements prior to the introduction of electronic support
for these activities, an ethnographic study was performed with the relevant clinicians
and administrative staff at the hospital. This study is based on semi-structured inter-
views with clinicians, examination of paper-based artefacts, and observations of a
number of key locations within the working environment. A previous and highly

 Concepts for Analysis and Design of Mobile Healthcare Applications 231

detailed ethnographic study of the MDTM was also of much benefit in understanding
these activities (Kane and Luz, 2006).

The patient review process
When a patient is referred to the cardio-thoracic surgeon a letter of referral is received
at the tertiary referral hospital and transferred to the coordinator for the cardio-
thoracic unit. The coordinator will record the patients’ details to a note book and store
the letter of referral along with any other documents received to a file, which is then
placed in a portable carry case. The patients’ case will not be discussed again until the
weekly meeting of the coordinator and surgeon. Current and new patients are dis-
cussed at this meeting in order to decide on tests that are needed before the patients
case can be discussed at an MDTM. The coordinator records the tests required and
follows up on the actions required with the patient and referring hospital to ensure
they are carried out. Until these actions have been completed the patient is not yet
‘active’: these tests must be completed before deciding if the patient is ready to be
discussed at the MDTM. Scans carried out at other hospitals will be forwarded to the
tertiary referral hospital to be examined by the specialist radiologist.

When this initial processing is complete the patients are put on a list for discussion
at a weekly MDTM, or referred back to the initial process if more information is
needed. The coordinator is responsible for ensuring that the patient names are on the
MDTM list and that the patient information needed at the MDTM is available. The
surgeon discusses the patient cases with other clinicians at the MDTM, while
the coordinator records follow up actions needed and decisions made. Once again the
coordinator is responsible to implement follow up actions needed.

The patients that have been recommended for surgery at the MDTM come to the
hospital for an outpatient assessment of general health before a final decision on sur-
gery is made. While the assessment is carried out by a member of the surgical team
the coordinator records the information on a self made artefact. The patients assessed
will then have their cases discussed at the next meeting between the coordinator and
surgeon. The coordinator will have to manage the patients requiring discussion after
the outpatient assessment and weekly meeting, along with other follow up actions. In
addition to the work described above in processing patients there are other tasks that
need to be carried out. For instance the coordinator must answer queries on informa-
tion related to patient processing from patients themselves, other hospitals, and col-
leagues. From the patient processing information the surgeon is mainly interested in
the numbers in process, at each phase, awaiting MDTM, outpatient assessment and
surgery.

3 Design Frameworks

We consider in this section concepts which have been used in ethnographically in-
formed healthcare case studies on hospital wards, with a view to informing design. It
is important to note that while these frameworks are not orthogonal, each contributes
a unique conceptual lens through which the ethnographic data is analysed and inter-
preted. We briefly consider the relevance of each framework to the case study, and
the degree to which they can shape design activities.

232 J. McKnight et al.

Table 1. Concepts and Abstractions used in Analysis and Design in Healthcare

Temporal Rhythms
The concept of temporal rhythms (repeating daily patterns of work) is used [11] to
analyse the information seeking activities of clinicians working on a ward. These
typical working rhythms include shift change, morning rounds, medication, meetings
and new arrivals etc, with each rhythm necessitating different information seeking
activities. For example, a clinician might order a lab test knowing they will need the
results for the following morning rounds; a nurse finishing a shift prepares all the
information required for the handover. The rhythms concept leads us to concentrate
on the information seeking and providing activities of clinicians that are a part of
these working rhythms.

Although working rhythms in the case study are not occurring on a daily basis the
concept still proves useful in analysing the information seeking and providing activi-
ties of the clinicians. The patient case discussion is the central provider and seeking
rhythm in the system. The information sought in this patient case discussion process
is provided to the MDTM. The MDTM often also acts as a source of information for
future case discussions. This reciprocal relationship is also true between the case
discussions and outpatient assessment.

Mobility Work
The concept of mobility work is used by [3] to describe the spatial aspect of co-
operative work that is necessary for clinicians to accomplish tasks on a hospital ward.
This entails that the correct configuration of people, places, resources and knowledge
to be achieved to accomplish a task, while operating in an environment where these
resources are also mobile. In general terms, mobility work is the work that must be
performed so that clinicians can carry out tasks at specific locations.

Analysis of the case study reveals multiple resources required at the MDTM, out-
patient and angiogram rooms to support task accomplishment. MDTM and PTF
equipment are fixed to the room location where they are needed. However other re-
sources are mobile such as patient files and notebooks, while the radiology scans and
reports are available where network or PC access is present. As only the patients who
must have their case discussed at the next MDTM or angiogram room meetings are

Concept Purpose

Rhythms Conceptual framework to explore relationship between information
seeking and temporal coordination.

Mobility Work Conceptual framework to explore effects of moving people and things
(artefacts, equipment) to accomplish work.

Common Information
Space

Conceptual framework for analysis of a hospital CIS to reveal issues that
affect information system design.

Cognitive Artefacts An approach to uncover and understand the cognitive work in healthcare
for the design of digital artefacts.

Coordinative Artefacts To understand how coordination and cooperation of workers on a ward is
enabled through a network of artefacts.

Activity-Based
Computing

Abstraction that bases support systems around main activities that clini-
cians perform daily.

 Concepts for Analysis and Design of Mobile Healthcare Applications 233

required, the coordinator must organise this information ahead of the meetings. This
involves creating a list of patients to be discussed while ensuring that other relevant
information is also ready. Overall, the concept was found to be applicable to our case
study, and suggests increased support for mobilisation of resources.

Common Information Space
The concept of a common information space (CIS) [2] is used by [13] to analyse co-
operative work of heterogeneous workers on an ICU ward, which is based on the use
of a common information repository, HealthStat. Their observations revealed a num-
ber of issues, firstly that physical proximity of co-workers does not equate to mutual
understanding to enable smooth coordination and interpretation of each other’s work;
this was not the case in other studies of a hospital CIS [5]. Secondly, those heteroge-
neous workers have a different representation of the underlying information stored in
HealthStat, so coordinating activities relies on each representation reflecting accurate
shared data, with any change propagated to each representation.

An obvious issue identified from our CIS analysis is the reliance on the coordinator
to relay information verbally to the consultant when discussing cases due to access
restrictions to paper artefacts. The consultant must perform a similar CIS transfer at
the MDTM, and is able to use the HIS to show scans and reports, but must refer to the
coordinator for non medical processing information. This temporary immersion and
information transfer in a “foreign” CIS for the duration of a task could be supported
by mobile devices that facilitate shared views on data. While there are many potential
issues surrounding the introduction of such technology [1], the framework is found to
be relevant to the case study and design.

Cognitive Artefacts
The failure of automation in healthcare to improve clinical performance is examined
by [14] who suggest that this is due to the design concepts on which these systems are
based. Current healthcare displays do not represent the underlying domain semantics
[12] and therefore are not suited to assisting clinicians in the cognitive work that they
must perform, which forces them to perform extra work to overcome these deficien-
cies. To design displays that support clinicians in the work they actually perform
requires a significant investigation of the technical work [10], i.e. non clinical work,
that is performed in order to enable clinical work to happen. One way of uncovering
this technical work is creation and usage of cognitive artefacts [9].

The cognitive artefacts concept focuses investigation on the artefacts that are cre-
ated by clinicians so that we can uncover the work that the artefact is designed to
support. This will reveal the goals and strategies employed by the artefact users dur-
ing their work. Investigation of the work the artefact supports will ensure that any
digital replacement is created with an understanding of how work is managed using
the artefact, and provide appropriate support. It is important to perform such analysis
as simply mimicking a paper based artefact may not equate to supporting the work it
was designed to help.

The coordinator in our case study creates patient lists to act as external representa-
tions of the patients. These are not annotated or stored, but guide case discussions. A
digital replacement could be created to support this task. This could involve the coor-
dinator dynamically managing these lists using a mobile device in situ as required
instead of en-masse prior to meetings. The coordinator also uses a notebook to record

234 J. McKnight et al.

summary patient processing information such as scans, tests and patients status for
quick reference. This is also used during case discussions and MDT meetings. Digitis-
ing this notebook requires an understanding of these multiple roles it plays and the
work processes it is used within. As patient lists are created from and are a subset of
the notebook information, its electronic counterpart should support this creation and
migration of information. The recorded scans, tests and reports in the notebook could
also be linked to the HIS, which could track and update patient processing status
automatically, instead of requiring a search for patient details on the HIS and re-
cording them to the notebook. Again, we can see that the framework is relevant to the
case study, with a particular focus to the type of support suggested.

Activity Based Computing
The concept of Activity-Based Computing (ABC) is explored by [6] to investigate
providing support for healthcare work. The activity abstraction is used due to concerns
about the suitability of traditional paradigms, such as application and document cen-
tered systems, to an environment where work is “nomadic, collaborative, intensive and
often interrupted”. ABC is designed to allow activities to be suspended and resumed
when interrupted and handed over to colleagues to support ad-hoc collaboration.

Activity Based Computing was proposed as an alternative to document and appli-
cation centred system due to the nomadic, collaborative intensive and often inter-
rupted nature of work in healthcare. While activity management is an important
aspect of the work, and the issues targeted by the framework (collaborative, intensive,
nomadic, interruptions) are relevant, the framework was found to apply more to the
wider context of the application, rather than design for the review process itself.

Coordinative Artefacts
Bardram and Bossen [4] look at coordination and collaboration on a hospital ward by
analysing usage of non digital coordinative artefacts. It was found that these artefacts
(worksheets, whiteboards etc) facilitated locating patients and staff, cooperative plan-
ning, continuous coordination, status overview and passing messages. This has impli-
cations for development that digitises these artefacts as the functionality afforded to
clinicians must be retained.

The study in [4] was focused on a heterogeneous group of workers on a hospital
ward and is not directly applicable to our case study as the non digital artefacts cre-
ated by our clinicians are primarily created for their own personal use, with some
minor exceptions. While it is possible that the work system could well benefit from
making greater use of such artefacts, it was not found to be immediately applicable to
the case study.

4 Future Work

The question of how to choose an appropriate framework has not yet been fully ad-
dressed. We would argue that the closer the symmetry between the chosen concept
and work system under study, the easier it will be to elucidate and communicate re-
quirements for design. Specifically we need to address what constitutes a “fit” be-
tween a work system and concept and how we can extract requirements or design
recommendations from analysis.

 Concepts for Analysis and Design of Mobile Healthcare Applications 235

While each concept will prove more or less applicable to any given work system,
the range of relevant design concepts goes beyond those considered in this paper. It
could be that the process of attempting to apply a number of concepts to analysis of a
particular setting may facilitate selection or development of a more suitable frame-
work for conceptual description. Another interesting and related issue is the effect of
such frameworks on interpretation of evaluation data from prototyping activities
which might be conducted as part of a human-centered design process. A further
question to be addressed is the role of such frameworks in the context of broader
methodologies for analysis and design.

5 Discussion and Conclusions

Analysis of our case study has revealed that the existing design frameworks probe
different aspects of the work performed and suggest different forms of technology
intervention. A question which arises is whether development teams should seek to
adopt a single framework for a particular project, or whether it would be better to
consider multiple points of view, starting from the same ethnographic data. Another
question is whether there a case for "unifying" frameworks which bring together mul-
tiple design concepts, or is it sufficient to have a checklist of things to consider in
design, which is derived from a variety of frameworks.
 In conclusion, the decision of which conceptual framework to adopt should not be
made lightly; ideally the development team should have a palette of concepts, from
which they can choose according to the context. Designers should be wary of influ-
ence of the analysis framework on the design space. Furthermore, the relationship of
the design framework with further stages of design process remains to be investigated.

Acknowledgements

J. McKnight is supported by an IRCSET/Intel Enterprise Partnership award.

References

1. Ash, J.S., Berg, M., Coiera, E.: Some Unintended Consequences of Information Technol-
ogy in Health Care: The Nature of Patient Care Information System-related Errors. Journal
of the American Medical Informatics Association 11(2), 104–112 (2004)

2. Bannon, L., Bødker, S.: Constructing Common Information Spaces. In: Proceedings of
ECSCW 1997, pp. 81–96. Kluwer Academic Publishers, Norwell (1997)

3. Bardram, J.E., Bossen, C.: Mobility Work: The Spatial Dimension of Collaboration at a
Hospital. Computer Supported Cooperative Work 14(2), 131–160 (2005)

4. Bardram, J.E., Bossen, C.: A Web of Coordinative Artifacts: Collaborative Work at a Hos-
pital Ward. In: ACM Conference on Supporting Group Work. ACM Press, New York
(2005)

5. Bossen, C.: The parameters of common information spaces: the heterogeneity of coopera-
tive work at a hospital ward. In: Computer supported cooperative work. ACM Press, New
York (2002)

236 J. McKnight et al.

6. Christensen, H., Bardram, J.E.: Supporting Human Activities - Exploring Activity-
Centered Computing. In: 4th International Conference on Ubiquitous Computing (2002)

7. Hartswood, M., Procter, R., Slack, R., Voß, A., Büscher, M., Rouncefield, M., Rouchy, P.:
Co-realisation: towards a principled synthesis of ethnomethodology and participatory de-
sign. Scand. J. Inf. Syst. 14(2), 9–30 (2002)

8. Kane, B., Luz, S.: Multidisciplinary medical team meetings: An analysis of collaborative
working with special attention to timing and teleconferencing. Computer Supported Coop-
erative Work 15(5), 501–535 (2006)

9. Nemeth, C., Cook, R.: Discovering and Supporting Temporal Cognition in Complex Envi-
ronments. In: CogSci. 2004, Chicago, USA (2004)

10. Nemeth, C., Cook, R., et al.: The Messy Details: Insights from the Study of Technical
Work in Healthcare. IEEE Trans. Syst. Man Cybern. 34(6), 689–692 (2004)

11. Reddy, M., Dourish, P., et al.: A Finger on the Pulse: Temporal Rhythms and Information
Seeking in Medical Work. In: CSCW 2002, New Orleans, USA (2002)

12. Woods, D.D., Hollnagel, E.: Mapping Cognitive Demands in Complex Problem Solving
Worlds. International Journal of Man Machine Studies 26, 257–275 (1987)

13. Reddy, M., Dourish, P., et al.: Coordinating Heterogeneous Work: information and Repre-
sentation in Medical Care. In: European Conference on CSCW, Bonn, Germany (2001)

14. Nemeth, C., O’Connor, M., Klock, P., Cook, R.: Mapping Cognitive Work: The way out
of IT System Failures. In: AMIA 2005 Annual Symposium, Washington, DC (2005)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 237–245, 2008.
© IFIP International Federation for Information Processing 2008

ShaMAN: An Agent Meta-model for Computer Games

Steve Goschnick, Sandrine Balbo, and Liz Sonenberg

Interaction Design Group, DIS, University of Melbourne, 3010, Australia
{stevenbg,sandrine,l.sonenberg}@unimelb.edu.au

Abstract. In this paper, we detail recent research on agent meta-models. In par-
ticular, we introduce a new agent meta-model called ShaMAN, created with a
specific focus on computer game development using agent systems. ShaMAN
was derived by applying the concept of Normalisation from Information Analy-
sis, against a superset of agent meta-model concepts from the meta-models in-
vestigated. A number of features are identified, including human-agent locales
and socialworlds, that might be usefully added to a generic AO meta-model.

Keywords: Agent-oriented, Agent Architecture, Multi-Agent Systems, Meta-
model, Agent Meta-models, Agents in Computer Games, HCI.

1 Introduction

Agent-oriented (AO) architectures and methodologies are the main interest area of the
research outlined here, with a focus on the application domain of computer games.
While we are specifically interested in extending current AO concepts to further fa-
cilitate game specification and development, a consequence of this study identifies
possible generic features to add to an AO meta-model.

1.1 Motivation

Computer games invariably have a graphic user interface (GUI) whether they are on
PCs, dedicated game consoles or mobile phones. Additionally, many games are multi-
user over either a proprietary network or the Internet, and as such, some data is often
shared between multiple users. Neither graphic interfaces nor their associated event
models, nor distributed data are well considered in the current AO architectures and
frameworks, but computer games make heavy use of all three.

There is a precedent early on in the Object-oriented (OO) paradigm for an under-
appreciation of these same facets of application programs, which ought to be instruc-
tive for the newer AO paradigm. At about the time that mainstream developers moved
to OO languages, in particular C++ (early 1990’s), GUI interfaces became the default
in mainstream operating systems (OS). GUI and mouse/pointer interfaces made it
necessary for application programmers to handle non-sequential event-handling, a
significant change in programming practice from sequential processing in most char-
acter-based applications. Prior to more modern OO languages such as Java, both the
GUI and event-handling was not a part of the language proper, e.g. C++. For

238 S. Goschnick, S. Balbo, and L. Sonenberg

exam-ple, on the Unix OS events were handled via X-Windows and Motif class li-
braries. Thus, the application programmer in the early 1990s moved to an OO para-
digm in language constructs, but their dealings with the GUI and event-driven
programming, initially happened outside of the OO paradigm. So, an event-driven
paradigm of pro-gramming happened concurrently by necessity, but it initially went
unheralded in the shadow of the OO language paradigm.

1.2 A Gap in Agent Architectures

From the start AO has been socially-oriented such that inter-agent communication – a
form of event - is typically allowed for with an Agent Communication Language
(ACL). However, the AO paradigm has followed the initial OO programming lan-
guages, in not doing anything within the architecture or the constructs of the lan-
guages themselves, with regard to the GUI interface or non-agent event-handling.

Fig. 1. Real world and the Object Action Interface Model

Interaction events and GUI interface objects are at the core of all mainstream com-
puting platforms today, whether it be workstation, desktop, laptop, PDA or mobile
phone. Figure 1 is an adaption of Shneiderman’s Object Action Interface Model [20],
showing a high-level representation of the physical world and what is done on a com-
puter to supplement it, when a user interacts with an application program, via a com-
puter screen and input mechanisms (e.g. mouse and keyboard).

The gap addressed by our research, is to achieve an AO architecture that engages
with the user at the level of a GUI metaphor rendered down to the pixel level (left-
hand side of right box in figure 1), with events down to the keyboard and mouse-click
level, (right-hand side of figure 1). Our architecture is expressed as a meta-model.

1.3 Meta-models

Much of the research discussed here is centred around meta-models expressed in
UML class diagram notation. Meta-models expressed in UML as such are now com-
monly used in both AO [1,12,13] and OO [17] research and development domains: to
represent state-holding entities; to communicate base ideas; and as a useful means to
compare different agent systems or architectures [6,12].

1.3.1 Agent Concepts
Given that there is currently no universally accepted single meta-model for AO sys-
tems, when we first looked to agent concepts and architectures with computer games

 ShaMAN: An Agent Meta-model for Computer Games 239

in mind, we examined the meta-models of several agent architectures and methodolo-
gies - AAII [16], GAIA [22,23], Tropos [1,11], TAO/MAS-ML [5], ROADMAP
[13,14], ShadowBoard [8,9] - to explore the commonalities and differences between
them. In addition, given our identification of a gap in the AO paradigm at the input
device event level, we studied several well-known meta-models from the Task Model-
ling field, with its roots in the interaction between human users and computational
devices, covered elsewhere [10].

1.3.2 Normalisation
A technique from Information Analysis (IA) used to improve ER models [2] that did
not crossover into the later OO paradigm is the concept of Data Normalisation [15].
In this process derived from relational mathematics by Codd [3], the ER model is put
into normal form. The model resulting from normalising a preliminary model, is con-
sidered to be in a state ideal for future change, and one that causes the least anomalies
to operations upon the state held in the current entities. It is usually applied in IA to a
model as a quality control procedure, however, Normalisation can also be used as a
bottom-up design technique enabling the analyst to methodically deduce a well-
formed model from a set of relevant concepts. In this research we applied it to a su-
perset of the agent concepts found in agent and task meta-models, and arrived at a
normalised agent meta-model named ShaMAN. From the perspective of a multi-agent
system at runtime, a normalised meta-model is best for insertion, update and deletion
of state information as it is happening in real-time.

Fig. 2. The ShaMAN Agent Meta-model (with insert of a concrete game Locale)

240 S. Goschnick, S. Balbo, and L. Sonenberg

1.3.3 Overview
In Section 2 we introduce the ShaMAN agent meta-model. To explain some of the en-
tities in it, we present two groupings of the entities from the meta-model in detail, and
then describe the flexibility it brings to building applications. In Section 3 we com-
pare the concepts from the ShaMAN meta-model with those other agent meta-models
investigated. In Section 4 we conclude and look to future work related to ShaMAN.

2 The ShaMAN Meta-model

We arrived at the ShaMAN meta-model depicted in figure 2 by taking concepts from a
number of existing AO meta-models and a number of Task Analysis meta-models [10]
– analysed them for similarities and differences, added some extra requirements from
the games application genre, and then normalised the resultant set of entities. The fol-
lowing sections describe some aspects of the ShaMAN meta-model in more detail.

2.1 Locales for Computer Games

Computer games invariably interact with the player through the usage of a human-
machine interface, for example a screen of one size or another. The Locale sub-section
of ShaMAN lets us model the visual metaphors and the screen interaction between
player/user and screen characters of a game, right in the AO model itself, rather than
leaving it to some other paradigm such as OO. While some agent meta-models do have
constructs for the agent environment, none of those investigated specifically model the
computer screen as the primary representation of that environment.

In ShaMAN, this screen representation of an agent’s environment is called a Lo-
cale - in homage to Fitzpatrick’s [7] definition of a Locale as a generalised abstract
representation of where members of a Social World [21] inhabit and interact. Figure 3
represents the sub-section of the ShaMAN meta-model that represents Locales within
games.

A Locale entity may have sub-locales within hierarchies of Locales. Locale is a
generic concept representing some spatial construct presentable on the screen, e.g.
room, outdoor area, sections of a board-game - suitably broad enough for novel game
interfaces.

Fig. 3. The Locale sub-section of the meta-model

 ShaMAN: An Agent Meta-model for Computer Games 241

The insert in figure 2 is a concrete example of a Locale. It depicts the bedroom of a
player’s character within a game, which is represented as a Locale in ShaMAN. The
HotSpot entity represents any area on the screen that is interactive, in the sense that
whenever the user either clicks or passes over that area on the screen (or has the focus,
from a keystroke point-of-view), certain interaction between the user and the game
may take place. Whether the game presents a 2D or 3D scene, or an abstraction, the
interaction with a standard display is 2D and involves area. The HotSpot entity has
two relationships with Locale, one named to and the other named from – enabling
navigation between Locales.

A HotSpot may also link to an OnSiteResource entity. These are Resources that
live in the Resource entity (which may involve a hierarchy of Resources). Resources
are typically programmed entities that are not Agent-oriented. E.g. clicking on the
digital clock on the bedside table opens a window that displays a fully-functioning
clock object, which is a Resource. OnSiteResource is an associate entity – a represen-
tation that allows the same Resource to be used in multiple Locales, e.g. a clock in
many rooms drawing upon the same programmed code. Resource may also represent
real objects in the real world, such as in a robot or a sensor application based upon the
ShaMAN meta-model.

A HotSpot may also have a relationship with the entity LinkCondition, which in turn
links to a Goal via a relationship called has-hurdle. This allows the game developer to
enforce conditions to be met. Locale is also linked to the entities Attendee and Inhabi-
tant. Attendee is an associative entity that records all occupants in a particular Locale
over time, retaining a record of when agents (or human avatars) entered and left a Lo-
cale. It is linked to the agent’s Role during that occupation via AgentRole, and also to
the SocialWorld they were engaged in when they did so. This history aspect of the
Attendee is usefull in providing and/or recording a back-story for any particular agent-
oriented game character – a necessary aspect of realistic game creation.

2.2 The Goals, Roles, Responsibilities and Tasks of Agents

Computer games often have the need for intelligent, intentional, proactive and autono-
mous game characters that interact both with the human players and with other
char-acters in a game. These properties are the harbingers of AO systems, and the
sub-group of entities from ShaMAN meta-model in left and centre of figure 4,

Fig. 4. Goals, Roles and Tasks in ShaMAN

242 S. Goschnick, S. Balbo, and L. Sonenberg

represent the entities that appear most frequently (but not consistently) in one form or
another, in many of the agent meta-models that we examined.

Figure 4 shows five entities in this sub-model of ShaMAN that have hierarchies of
sub-elements of the same type, namely: Goal, Role, Agent, Task and SocialWorld.
The associate entity between Goal and Role called Responsibility represents the re-
sponsibilities of a particular Role. A given Responsibility instance is fulfilled via an

Table 1. ShaMAN meta-model comparison with other agent architectures and meta-models

ShaMAN KGR /BDI GAIA V1 GAIA V2 RoadMap Tropos MAS-
ML

DigitalFriend

 AgentRole Role Role (pointers) Play AgentRole

 Percept Percept

 Event Event Event

 SocialWorld
(tree)

Acquaint-
ance

System Organisation,
Pattern

 Actor/
Social
Agent

Organisa-
tion

 SocialRole System Actor/
Position

Owner-
ship

 Member

 Item

 AgentRole-
Goal

Capability,
Service

Services,
Activity

Service,
Activity

Services Depend-
ency

Actions AgentRoleGoal

 Task (tree) Activity Activity Plan Task

 SpeechAct Interaction Activity Message SpeechAct

 ActionType Action,
performa-
tive

 Action

 SpeechFlow Acquaint-
ance,
Permis-
sions,
Protocols

Protocol,
Acquaintance
model5

Protocol Protocol MessageFlow

 Resource
(tree)

Resource Resource Resource Protocol
(tree)

Resource Object Resource

 Agent-
Resource

Service Permissions Permissions Depend-
ency

 AgentResource

 Ontology
(tree)

 Knowledge-
Component

 Ontology (tree)

 List Knowledge ResourcList

 Locale (tree) Environment Environment-
Zone

 Environ-
ment

 Attendee

 Inhabitant Inhabit

 OnSite

 Resource

 HotSpot

 Link-
Condition

R,A,D,I,T,Rt A,D,I A,D A,D R,A,D,Rt R,A,D,I R,A,D R,A,D,I,Rt

Note 1. R,A,D,I,T,Rt lifecycle phases: Requirements, Analysis, Design, Implementation, Testing, Run-time.
Note 2. The DigitalFriend V1 tool [9] is an implementation of the ShadowBoard agent architecture [8].
Note 3. AO models for Prometheus [18] and GoalNet [19] were in the study but not here, for space rea-sons.

 ShaMAN: An Agent Meta-model for Computer Games 243

instance in the AgentRoleGoal entity, by being enacted or performed by an Agent that
takes on that Role. An Agent may have many Roles via AgentRole.

Goals will often have sub-goals in a hierarchy of goals to be achieved. One such
sub-goal will be associated with a matching sub-role, and an agent will be assigned
via an instance of the AgentRole entity. During execution of a ShaMAN application,
sub-agents can be called upon in a downward direction via the need to achieve the
sub-goals of parent goals, which is termed goal-driven execution. Or, they can be
called upon from below, where a SpeechAct has been sent from further down the sub-
agent chain, and the upper level goal has to be solved or rerun, termed data-driven
execution. Data-driven execution often eventuates when a sub-agent retrieves new
information from an external service such as a Web service, or from another agent
across agent hierarchies or across Social Worlds.

2.3 Social Worlds in ShaMAN

Individual Agents can be members of one or more SocialWorlds. Their membership
begins with an instance in the Member entity. Agents are related to the Member entity via
the AgentRole entity. SocialWorld’s have a number of SocialRoles, such as ‘Captain’ or
‘Treasurer’, which is useful in the design phase before specific agents are instantiated.

3 A Comparison of Agent Meta-models

Our motivation for collecting and comparing agent meta-models was for their agent
concepts, as the primary input into a normalisation process, to arrive at a well-formed
agent meta-model. Hence our initial interest in the comparison was analytic only.

Table 1 is a comparative format representing a sub-set of agent concepts that we
used as input into the meta-model normalisation process in deriving the ShaMAN
entities (the first table column). All models have some entity similar to the Sha-
MAN’s Goal, Role, Responsibility and Agent, so these have been excluded from the
table in this paper. Even so, a particular comparison (e.g. ShaMAN’s Goal(tree) and
Tropos’s Soft Goal/Hard Goal) only approximately equates the concepts. Sometimes
a comparison is close in meaning, other times it is close in name but distant in mean-
ing, and sometimes there is wide variance in both name and the semantics. In the full
study we did examine each twin comparison of concept in detail, but it cannot be
presented in this paper for space reasons.

What is more useful in this paper is to highlight where ShaMAN has entities that
have little or no comparison across the other agent meta-models examined. The darker
shaded cells in the table shows that entities around Locale are unique to ShaMAN.
Similarly, the lighter shaded cells show several of the entities related to SocialWorld
are unique to ShaMAN. These entities were discussed explicitly above in the discus-
sion of figures 3 and 4.

4 Conclusions and the Future

Agent-oriented architectures and frameworks lend themselves well to Human-Centred
Software Engineering, given that several of them are derived from branches of

244 S. Goschnick, S. Balbo, and L. Sonenberg

psychology and mentalistic notions (e.g. BDI – from Folk Psychology; ShadowBoard –
from Analytical Psychology). We set out to extend current AO concepts to further fa-
cilitate game specification and development. While the entities unique to ShaMAN were
introduced specifically for that purpose, most of them have a more generic usage, par-
ticularly for intelligent applications, with multiple users, many agents and rich user
interfaces. It has not been our intent to develop a generic agent meta-model, however
others are endeavouring to define an all-inclusive agent meta-model: Hahn et al [12]
demonstrate the usefulness of the MDA (model driven architecture, see OMG [17])
approach to software development with AO tools. Fischer et al [6] propose that a unified
agent meta-model is a worthy goal and could provide interoperability between many of
the current disparate agent meta-models, methodologies and technology platforms.
Theirs is a work-in-progress that we intend to align ShaMAN development with, as
much as possible.

References

1. Bresciani, P., Perini, A., Giorgini, P., Guinchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems, 203–236 (2004)

2. Chen, P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM Transac-
tions on Database Systems 1, 9–36 (1976)

3. Codd, E.F.: A relational model of data for large shared data banks. Communications of the
ACM 13, 377–387 (1970)

4. Cossentino, M.: Different perspectives in designing multi-agent systems. In: AgeS 2002,
workshop at NodE 2002, Erfurt, Germany (2002)

5. Da Silva, V.T., De Lucena, C.J.P.: From a Conceptual Framework for Agents and Ob-jects
to a Multi-Agent System Modeling Language. Autonomous Agents and Multi-Agent Sys-
tems 9, 145–189 (2004)

6. Fischer, K.: Agent-oriented software engineering: a model-driven approach. International
Journal of Agent-Oriented Software Engineering 1(3/4), 334–369 (2007)

7. Fitzpatrick, G.: The Locales Framework: Understanding and Designing for Wicked Prob-
lems. Kluwer Academic Publications, London (2003)

8. Goschnick, S.B.: ShadowBoard: an Agent Architecture for enabling a sophisticated Digital
Self. Thesis, Dept. of Computer Science, University of Melbourne, Australia (2001)

9. Goschnick, S.B.: The DigitalFriend: the First End-User Oriented Multi-Agent System. In:
OSDC 2006, the third Open Source Developers’ Conference, Melbourne, Australia,
December 5-8 (2006)

10. Goschnick, S., Balbo, S., Sonenberg, L.: From Task to Agent-Oriented Meta-models, and
Back Again. In: Tamodia 2008, Pisa, Italy (2008)

11. Guinchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development Method-
ology: Processes, Models and Diagrams. In: AAMAS 2002. ACM, New York (2002)

12. Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesaeter, B., Berre, A., Zinnikus, I.: Meta-
models, Models, and Model Transformations: Towards Interoperable Agents. In: Fischer,
K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI), vol. 4196,
pp. 123–134. Springer, Heidelberg (2006)

13. Juan, T., Sterling, L.: The ROADMAP Meta-model for Intelligent Adaptive Multi-Agent
Systems in Open Environments. In: 4th International Workshop on Agent Oriented Soft-
ware Engineering, Melbourne (2003)

 ShaMAN: An Agent Meta-model for Computer Games 245

14. Juan, T., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology for Com-
plex Open Systems. In: Autonomous Agents and Multi-Agent Systems AAMAS 2002
(2002)

15. Kent, W.: A Simple Guide to Five Normal Forms in Relational Database Theory. Commu-
nications of the ACM 26(2), 120–125 (1983)

16. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems
of BDI Agents. In: Van de Velde, W., Perram, J.W. (eds.) The Seventh European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World. Springer, Berlin (1996)

17. OMG: MDA Guide Version 1.0.1 (2003),
http//www.omg.org/docs/omg/03-06-01.pdf

18. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent
Agents. In: AOSE Workshop, AAMAS-20, Bologna, Italy (2002)

19. Shen, Z., Li, D., Miao, C., Gay, R.: Goal-oriented Methodology for Agent System Devel-
opment. In: International Conference on Intelligent Agent Technology, IAT 2005 (2005)

20. Shneiderman, B.: Designing the User Interface, Strategies for Effective Human-Computer
Interaction, 3rd edn. Addison-Wesley, USA (1997)

21. Strauss, A.: A Social World Perspective. Studies in Symbolic Interaction 1, 119–128
(1978)

22. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems 3, 285–312 (2000)

23. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing Multiagent Systems: The
Gaia Methodology. ACM Transactions on Software Engineering and Methodology 12,
417–470 (2003)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 246–254, 2008.
© IFIP International Federation for Information Processing 2008

A Study on Appropriate Plant Diagram Synthesis
for User-Suited HMI in Operating Control

Mieczyslaw Metzger and Grzegorz Polaków

Faculty of Automatic Control, Electronics and Computer Science
Silesian University of Technology,

Akademicka 16, 44-100 Gliwice, Poland
{mieczyslaw.metzger,grzegorz.polakow}@polsl.pl

Abstract. In this paper a study on appropriate plant diagram synthesis for
user-suited HMI in operating control is presented. Discussion is based on the
long-term personal experience and illustrated with excerpts of existing HMIs
developed for research and industrial use. The HMI notion is defined for operat-
ing control and for operator training. The paper present three aspects of plant
diagrams design. The first aspect deals with task-oriented usage of screen space
for plant diagram and other GUI elements. Second aspect covers all methods of
image creation for process diagrams, including photography, schematic
diagrams, use of predefined normalised 3D graphical elements, and creative
possibilities of 3D scene. The third aspect stresses capability of dynamic visu-
alisation with the use of animated graphics.

Keywords: Usability of HMI for operating control, software engineering for
user-suited HMI, plant diagram for GUI, visualisation, SCADA.

1 Introduction

Proper design of a plant diagram, according to the needs of a specific plant operator
(or group of operators), is an important task, since the comfort of the plant operators’
is the key issue influencing efficiency of their work, and implicitly accuracy of their
decisions. Design of graphical user interfaces in, for example, computer entertainment
industry, backed up by large finances due to potential profits, is nearly insignificant
and hardly related to the importance of work and responsibilities of industrial process’
operators.

Modern automation systems are equipped with operating panels implementing hu-
man-machine interface (HMI) for communication between a human operator and an
industrial process being automated. HMI is the main part of the SCADA (Supervisory
Control and Data Acquisition) application. The quality of the HMI determines a com-
fort of the human operator, and indirectly influences a productivity of one’s work,
therefore it should be designed in a user-suited way. A specific operator of a plant has
his own partialities and habits, as humans, in general, have individual preferences for
tools used in their everyday work and life. Therefore, a task of synthesising HMI
suited to the specific human operator is worth considering.

 A Study on Appropriate Plant Diagram Synthesis 247

Publications and manuals for HMI synthesis deal mainly with the technical issues
of GUI, like design of numerical control and indication fields, spatial layout of alert
indicators, way of process trends presentation, etc. A very important part of the
GUI, i.e. plant diagram, its design and synthesis, affecting human operator’s percep-
tion and sense of aesthetics, is hard to normalise and should be suited to the specific
user and tasks. In this paper a study on appropriate plant diagram synthesis for user-
suited HMI in operating control is presented. Discussion is based on the long-term
personal experience and illustrated with excerpts of existing HMIs developed for
research and industrial use.

The paper is organised as follows. The next section presents much shortened over-
view of the related work in the bibliography. After that, the HMI notion is defined for
the operating control and for the operator training. The following next three sections
present three aspects of plant diagrams design. The first aspect deals with
task-oriented usage of screen space for plant diagram and other GUI elements. Second
aspect covers all methods of image creation for process diagrams, including photog-
raphy, schematic diagrams, use of predefined normalised graphical elements, and
creative possibilities of 3D graphics. Third aspect stresses capability of dynamic visu-
alization with the use of animated graphics. Finally, a summary of major contribu-
tions is presented as concluding remarks.

2 Related Work

In this paper a discussion on synthesis of plant diagram for industrial HMI is pre-
sented. Hence, the shortened literature review here focuses on works dealing with
cognitive and aesthetic aspects of industrial HMI. Recent developments in the area of
usability in the human centred software engineering introduce some formal methods
(see for example [1-5]), while fundamentals of human centred software engineering
(HCSE) are well summarised in the books [6-7]. A special attention should be paid
for the work of Seffah et.al. [5], in which 25 criterions for measuring usability are
discussed. It should be also noticed, that there exist several attempts to standardisa-
tion, such as ISO/IS 9241, ISO/IS 13407, ISO/TR 18529, ISO 16071.

Different, slightly non-technical, approach for solving problems of the user inter-
face design for effective human-computer interaction was presented in the books [8-
9]. Ecological aspects of visual perception were discussed e.g. in [10], where it is
stated that humans work more efficiently when interacting with three dimensional im-
ages as they are more analogous to the real world.

To mention particular ideas dedicated for synthesis of GUI being central part of
HMI in industrial SCADA applications, earlier, more specialised publications must be
referenced. It was 1986 when Norman in his note [11] introduced very important
statement, that from the user’s point of view it is the system’s interface what is re-
ceived as the actual system. A similar statement relating to simulators of industrial
processes are found in [12].

In works [13-15] the investigation of colours and complexity of plant diagrams are
presented. It is researched, how choice of colours and level of diagram’s complexity
influence the perception of the diagram. Wittenberg’s work [15] additionally discusses
three aspects of plant diagram design i.e. virtual process elements, task-oriented

248 M. Metzger and G. Polaków

diagrams, and visualization of both goals and present condition. In our paper there are
also three aspects of GUI synthesis discussed, from the other point of view.

3 HMI for Operating Control and for Operator’s Training

After the revolution caused by common use of computers in nearly every sphere of
everyday life, Human-Machine Interfaces (HMI) are used and required in many vari-
ous applications, including very extensive and profitable area of computer entertain-
ment. Before PCs spread and became popular, HMIs were used mainly in industrial
systems requiring an operational control. Those systems (implemented as expensive
specialised operating consoles) were designed by control instrumentation manufactur-
ers and supplied by an investor as a part of whole industrial process. End-users had to
accept the interfaces exactly as they were delivered.

Current wide availability of personal computers changed the situation. Operating
consoles based on PC are cheap and readily obtainable. Diversity of the operating
control software and the competition on the market makes it possible to easily and
cheaply develop operating panels (nowadays called SCADA for Supervisory Control
And Data Acquisition) according to the needs of a specific user. This paper focuses
on proper choice and design of GUI being the main part of the HMI for the SCADA
control operating system.

Fig. 1 symbolically presents the role of the GUI as perceived by the user of the sys-
tem – in this case an operator of industrial process. As it was stated in the literature
review, it is a GUI itself what is perceived by an operator as the system (see e.g. [11]).
This statement is physically backed up by the fact, that in real plants, operating sta-
tions are located in the control room, which is spatially distant from the process. Until
an emergency situation arises, there is no need for an operator to see and/or interact
with the process, all the physical phenomena are represented for him with the GUI.

Fig. 1. General interpretation of GUI for process control

 A Study on Appropriate Plant Diagram Synthesis 249

A common availability of computers with a relatively high processing power
enabled the possibility of creating real-time simulators of industrial processes, used to
train potential system operators. As it was cited above, simulator (numerical software
application) of an industrial process has to substitute the real process in such a way,
that user believes that he interacts with the real process – see Fig. 1.

This implies the need for proper GUI, with which the user might interact exactly in
the same way as in the case of real-world process. Hence, it should be noticed, that for
proper training the same GUI should be designed both for the SCADA and for the
simulator. In such case the operator is even unable to distinct if he controls the real-
world process or the simulator at the time. Such possibilities are known and exploited
in aerial and military applications for a long time, however it is the availability of
computer hardware and software which enables those possibilities in civil domains.
The discussion in this paper deals with such a GUI, which can be used both for
operating control of a real process and for control of a real-time simulated process for
operators training.

4 Task-Oriented Usage of Screen Space for Plant Diagram

Basing on twenty-year experience in the design of the HMI/GUI for industrial and
research purposes, a following statement can be presented. In the majority of cases the
usage of screen space depends on the task for which a particular GUI is designed.

a) b)

Fig. 2. a) GUI for hybrid exothermic reactor during the normal production, b) GUI for hybrid
exothermic reactor in the case of operating control for research experimentation

In Fig. 2a the GUI for operating control system of the industrial process during
normal operation is presented. The discussion below is illustrated with excerpts of
GUIs developed for our semi-industrial pilot plants that are presented in [16]. Specifi-
cally, in Fig. 2a the GUI for pilot hybrid exothermic reactor is shown. As in the
typical industrial systems, the background of the diagram is black. During normal op-
eration conditions, process diagram fills whole display space, because additional data
(e.g. variable trends) are needed during exceptional conditions only, and typically the

250 M. Metzger and G. Polaków

operator doesn’t need them, as he is not conducting any researches. When these addi-
tional information are needed to be displayed, there can be temporarily placed in
movable window in any preferable place of the diagram.

If process is being investigated, for example during start-up of the process, periodic
checkout, and redesign of installation, there is a need to constantly watch and keep
track of changes of variables’ values and their trends. Because of this, an alternate
GUI has to be designed for such conditions, in which the display space is divided into
several parts in which there is a place for the plant diagram, charts of variables’
trends, and increased number of controls supporting the investigations to be con-
ducted. The diagram itself, in this case, requires scaling-down or trimming, so it fits
to the limited display space. In Fig. 2b the GUI is presented for the already introduced
exothermic reactor, augmented with research capabilities.

5 Plant Diagram Selection

While there are both formal and informal attempts to standardisation of process
diagrams, it seems that more user-centred approach could be possible, as colour-
palette and aesthetics can modified on the fly for specific user needs. This could
increase efficiency of process operator’s work and improve accuracy of his decisions,
according to the literature cited above.

Current state-of-art offers main four possibilities of process diagram creation
technique (see Fig. 3):

a) Photograph of the real-world process;
b) Technical flowsheet;
c) 2D diagram composed of 3D and pseudo 3D elements;
d) Rendered full 3D scene.

For all the four stated techniques, research SCADA systems were developed (which
are more complicated than typical exploitation SCADA). Basing on experiences
gained during the synthesis of these applications and during their exploitation,
following findings can be formulated.

The quickest and cheapest technique during creation and processing is photogra-
phy. At the same time, its final effect is the least legible, because in the real installa-
tion there are many components, which are non-significant for the process operator.
Controls and indicators are lost in the clutter, implying increased operator’s reaction
times. Nevertheless, photography, instead of simplification, shows the real looks of
the process, which can be sometimes an advantage.

A technological chart based on a flow sheet uses the intentionally simplified dia-
gram, displaying the most important process components only. Such design requires
creativity and proper graphical tools. However, with no doubt, it is the most conven-
ient and the most popular technique used in the practice. Software development envi-
ronments for operating diagrams synthesis are usually supplied with a wide set of
glyphs for the typical industrial instrumentation.

 A Study on Appropriate Plant Diagram Synthesis 251

a) b)

c)

d)

Fig. 3. Most important possibilities of plant diagram creation: a) photograph, b) technical
flowsheet, c) 2D diagram with 3D elements, d) rendered full 3D scene

The third technique requires a proper software environment capable of SCADA
systems development, equipped with the 3D components, which could be placed in
the diagram space. A representative example of such environment is the National In-
struments LabVIEW [17], which was used to develop examples presented in this pa-
per. Using the supplied libraries of components including numerical controls and
indicators, an improved (when compared to the previous technique) diagram can be
synthesised. Because the components are designed to be perceived as three dimen-
sional by a human, the diagram is more readable and easier accepted by the operator.
A significant shortcoming of this approach is the limited set of ready components
supplied.

Three dimensional rendered scene is very attractive from visual point of view and
contains (as two previous cases) only selected components of the system, which are
important from operating control’s point of view. However, this technique of diagram
synthesis is the most difficult and complicated, as it requires expensive software tools,
non typical for an industrial control. Time required for the development (modelling of
the scene) is also significantly larger than in other techniques. It should be taken into

252 M. Metzger and G. Polaków

account, that the instrumentation of the presented example is exceptionally simple
when compared to industry-grade installation.

6 Animation in Diagrams for Operating Control

Animated graphics is still reluctantly accepted in the industrial applications, which is
surprising as it can significantly increase capabilities of on screen visualisation.

In Fig. 4a the GUI for operating control of sequencing reactor in wastewater
treatment process is presented. The key tasks of control in this process is turning the
stirring and aeration on and off adequately. Because of this, proper diagram elements
are animated when corresponding action is in progress. Such animated elements are
not provided as standard components and they have to be developed specifically for
the task, however gained effect and productivity increase are worth the effort.

a)

b)

Fig. 4. a) GUI for sequenced biotechnological process with animated elements (switching-on
and switching-off paddle mixers and floating bubbles of air), b) GUI for hydraulic process with
changeable architecture (only pipes which are open at the moment are displayed in the diagram)

Some industrial processes are designed to have changeable structure of compo-
nents connection, for example by cutting a flow of a liquid in a pipe. To enhance the
visualisation, this modified structure may by presented in the GUI. For example, pipes
closed with valves may disappear from the diagram completely. Fig. 4b presents such
a GUI. For illustrative purposes, all the pipes are shown, but during the runtime only
the current configuration of the piping is displayed.

7 Concluding Remarks

In this paper a study on appropriate plant diagram synthesis for user-suited HMI in
operating control is presented. Discussion is based on the long-term personal
experience and illustrated with excerpts of existing HMIs developed for research and
industrial use.

 A Study on Appropriate Plant Diagram Synthesis 253

After defining the HMI notion for the operating control and for the operator train-
ing, the paper describes three areas of the plant diagrams design process. The proper
usage of a screen space for the plant diagram and other HMI elements is described.
Then, four methods of image creation for process diagrams are depicted, i.e. photog-
raphy, schematic 2D diagrams, pseudo-3D diagrams composed of predefined graphi-
cal elements, and ray-traced full 3D scene. At last, dynamic visualisation capabilities
of the animated graphics are outlined.

The approach proposed here is not opposed to the one based on the formal meth-
ods, but it rather complements that methods with the point of view of industrial HMIs
developers. The practice shows that users often prefer specific solutions, and their
preferences are not based on any objective measurable principles, but are extremely
subjective. Enabling the user to choose the variant of the graphical layout of the inter-
face on his own is therefore highly desirable. The presented survey of methods can be
used as a start point for the process of user-suited HMI design.

Acknowledgements. This work was supported by the Polish Ministry of Scientific
Research and Education.

References

1. Vicente, K.J., Rasmussen, J.: Ecological Interface Design: Theoretical foundations. IEEE
Transactions on Systems, Man and Cybernetics 22, 589–606 (1992)

2. Paterno, F.: Formal reasoning about dialogue properties with automatic support. Interact-
ing with computers 9, 173–196 (1997)

3. Jamieson, G.A., Vicente, K.J.: Ecological interface design for petrochemical applications:
supporting operator adaptation, continuous learning, and distributed, collaborative work.
Computers and Chemical Engineering 25, 1055–1074 (2001)

4. Seffah, A., Forbrig, P., Javahery, H.: Multi-devices “Multiple” user interfaces: develop-
ment models and research opportunities. The Journal of Systems and Software 73, 287–
300 (2004)

5. Seffah, A., Donyaee, M., Kline, R.B., Padda, H.K.: Usability measurement and metrics: A
consolidated model. Software Qual. J. 14, 159–178 (2006)

6. Burns, C.M., Hajdukiewicz, J.R.: Ecological Interface Design. CRC Press, Boca Raton
(2004)

7. Seffah, A., Gulliksen, J., Desmarais, M.C.: Human-Centered Software Engineering – Inte-
grating Usability in the Software Development Lifecycle. Springer, Heidelberg (2005)

8. Rasmussen, J.: Information processing and human-machine interaction: An approach to
cognitive engineering. North-Holland, Amsterdam (1986)

9. Shneiderman, B.: Designing the user interface - strategies for effective Human-Computer
Interaction. Addison-Wesley, Reading (1998)

10. Gibson, J.J.: The ecological approach to visual perception. Houghton Miffin (1979)
11. Norman, D.A.: Cognitive Engineering. In: User Centered System Design: New Perspec-

tives On Human-Computer Interaction, p. 61. Erlbaum, Hillsdale (1986)
12. Metzger, M.: A new concept of industrial process simulation - cybernetic approach using

distributed access control schemes. SAMS 15, 185–202 (1994)
13. Inverso, D., Sokoll, R.: Optimum Human-Interface. Control Engineering, 93–98 (Septem-

ber 1997)

254 M. Metzger and G. Polaków

14. Johnson, D.: Conveing understandable process information to an operator requires more
than dazzling HMI graphics in real time. Control Engineering, 80–88 (September 1997)

15. Wittenberg, C.: A pictorial human-computer interface concept for supervisory control.
Control Engineering Practice 7, 865–878 (2004)

16. Metzger, M., Polaków, G.: Holonic Multiagent-Based System for Distributed Control of
Semi-industrial Pilot Plants. In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS
2007. LNCS (LNAI), vol. 4659, pp. 338–347. Springer, Heidelberg (2007)

17. Official National Instruments LabVIEW website, http://www.ni.com/labview/

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 255–262, 2008.
© IFIP International Federation for Information Processing 2008

Preserving Rich User Interface State in Web Applications
across Various Platforms

Fabio Paternò, Carmen Santoro, and Antonio Scorcia

ISTI-CNR, Via G. Moruzzi, 1
56124 Pisa, Italy

{Fabio.Paterno,Carmen.Santoro,Antonio.Scorcia}@isti.cnr.it

Abstract. This paper aims to provide thorough discussion of the aspects that
compose the state of a Web application user interface, and show how it can be
preserved across multiple devices with different interaction resources when the
user interface dynamically migrates. The approach proposed exploits a migra-
tion server along with logical user interface descriptions.

1 Introduction

The Web is the most common user interface. There are currently hundreds of millions
of Web sites and it is increasingly rare to find someone who has never used a Web
application. In the meantime, Web technologies have evolved in many directions: the
Web 2.0, Rich Interactive Applications, Multimodal Interfaces, … Another important
technological trend is the increasing availability in the mass market of many types of
interactive devices, in particular mobile devices, which has enabled the possibility of
ubiquitous applications.

In such environments migratory interfaces are particularly interesting. They allow
users to move about freely, change device and still continue the interaction from the
point where they left off. Thus, in order to obtain usable migration two aspects are
important: preserving the user interface state across multiple devices and adaptation to
the changing interaction resources. In this paper, we focus on the former aspect (state
preservation) in the context of Web applications, identify a broad set of relevant as-
pects, and show how they can be addressed by our migration environment.

After discussing related work, we first identify seven relevant aspects that can be
used to define the state of Web User Interfaces, including Web 2.0 applications with
Ajax scripts. Then, we introduce our architecture for supporting Web application
migration, and explain how it has been extended in order to be able to support the
various aspects that have been deemed useful for defining the user interface state.

2 Related Work

ICrafter [1] is a solution to generate adaptive interfaces for accessing services in in-
teractive spaces. It generates interfaces that adapt to different devices starting with
XML-based descriptions of the service that must be supported. However, ICrafter is

256 F. Paternò, C. Santoro, and A. Scorcia

limited to creating support for controlling interactive workspaces by generating user
interfaces for services obtained by dynamic composition of elementary ones and does
not provide support for migration and, consequently, continuity of task performance
across different devices.

Aura [2] provides support for migration but the solution adopted has a different
granularity. In Aura for each possible application service various applications are
available and the choice of the application depends on the interaction resources avail-
able. Thus, for example for word processing, if a desktop is available then an applica-
tion such as MS-Word can be activated, whereas in the case of a mobile platform a
lighter editing application is used. Thus, Aura aims to provide a similar support but
this is obtained mainly by changing the application depending on the resources avail-
able in the device in question, while we generate interfaces of the same application
that adapt to the interaction resources available.

Bharat and Cardelli [3] addressed the migration of entire applications (which is
problematic with limited-resource devices and different CPU architectures or operat-
ing systems) while we focus on the migration of the user interface part of a software
application. Kozuch and Satyanarayanan [4] identified a solution for migration based
on the encapsulation of all volatile execution state of a virtual machine. However,
their solution mainly supports migration of applications among desktop or laptop
systems by making copy of the application with the current state in a virtual machine
and then copy the virtual machine in the target device. This solution does not address
the support of different interaction platforms supporting different interaction
resources and modalities, with the consequent ability to adapt to them. Chung and
Dewan [5] proposed a specific solution for migration of applications shared among
several users. When migration is triggered the environment starts a fresh copy of the
application process in the target system, and replays the saved sequence of input
events to the copy in order to ensure that the process will get the state where it left off.
This solution does not consider migration across platform supporting different inter-
action resources and modalities and consequently does not support run-time genera-
tion of a new version of the user interface for a different platform. We follow a
different approach: we assume that the desktop version of an application exists, with-
out posing any restriction on the method or tool used for its development. Then,
during the user session, we dynamically generate the version for the platform at hand
exploiting model-based techniques.

We introduced some preliminary ideas on how to obtain automatic generation of
migratory Web interfaces in [6]. In this paper we are able to present a solution sup-
porting migration of rich information state, including application with Ajax scripts.

3 The Many Aspects of the Web Interface State

In our study we have identified at least eight aspects that can be relevant for defining
the state of Web user interfaces and that can have an impact on the overall user ex-
perience. The first element is associated with the user input. People make selections,
enter text and modify the state of various input controls during a session, and such
modifications should not be lost when moving to a new device if we want to maintain

 Preserving Rich User Interface State 257

continuity. An associated element is client-side variables associated with small func-
tionalities (e.g. Javascript variables).

Another component that can be dynamically modified is the content of a Web ap-
plication. While this can be easily managed with dynamic Web sites using PhP, JSP
and similar languages because whenever a new request is performed then a different
page is uploaded, with Ajax scripts this aspect becomes more problematic. Indeed, in
this case the content of the page can vary without requiring the loading of a new page.
Thus, it becomes more complex to detect what is actually composing the currently
displayed page.

Cookies are more and more used and they allow an application to provide small
pieces of information to the client in such a way that whenever the client accesses the
application, then the client identifiers are inserted in the HTTP protocol. It is impor-
tant that if and when a user changes device, then the current application preserves the
same cookies in order to be recognised by the application server. A related technique
is the session: it is a server-side mechanism, which stores information related to the
user session, which is in turn associated with a specific identifier.

Another important aspect is the history of user accesses, which is maintained by the
Web browser and drives the behaviour of the frequently used browser back button.
Since the user is still the same, even if she has changed device, then she would appre-
ciate still being able to easily return to recently accessed pages, even if through a dif-
ferent device. It is clear that the pages accessed through the new device may be
adapted to the currently available interaction resources. In some cases (e.g. migration
from desktop to mobile), it may even happen that the original desktop page is split into
multiple mobile pages, thus accessing all its content may require further navigation.

Bookmarks are another interesting aspect that can be considered part of the user in-
terface state. Users often use them to quickly find and access favourite pages. In mi-
gration, the devices change but not the user, who still has the same interests and may
appreciate the possibility to find in the current bookmarks including the pages that
were bookmarked in the previous device. Another element that has similar character-
istics is the browser home page: in some cases users may be interested to migrate it to
different platforms as well.

A last element that can be considered part of the state is the query string included
in a URL after the “?” symbol. It is usually used to specify parameters for a dynamic
site, which define some data that are presented in the associated page. By modifying
the query string we will access the same Web site but since the parameters vary, then
the corresponding page varies in terms of content.

4 An Architecture for Migratory Interfaces

Our architecture for migratory interfaces is based on a migration/proxy server. The
advantage of this choice with respect to installing the necessary functionalities on the
application servers is that we can concentrate them in a single server without the need
for replication in the servers supporting the various possible applications. Indeed, we
want to apply the migration support to a wide set of applications, and we do not want
to force the application developers to use any specific authoring environment or to

258 F. Paternò, C. Santoro, and A. Scorcia

apply specific annotations to ease the migration process. In general, we consider that a
wide set of Web applications for desktop systems already exist and they can be the
target for a migration infrastructure.

Our migration infrastructure exploits logical descriptions of user interfaces. In such
description there is an abstract level, which is platform independent and a concrete
level, which refines the previous one by adding concrete elements and attributes. The
environment has a service-oriented architecture based on four main functionality:

• Reverse Engineering, takes the existing Web pages for desktop systems and builds
the corresponding logical descriptions;

• Semantic Redesign, this module is in charge to perform the adaptation to the target
device. For this purpose it takes the abstract elements identified by the reverse en-
gineering module and maps then into concrete elements more suitable for the target
device. It also splits the source presentations into multiple presentation if they are
too expensive for the interaction resources of such target device.

• State Mapper, once a concrete description for the target device has been obtained
then the state resulting from the user interactions in the source use interface is as-
sociated with it. The abstract elements are used to identify which concrete element
in the source interface correspond to the concrete elements in the target interface.

• User Interface Generator, this module generates the user interface in some imple-
mentation language. One concrete description for a given platform, for example a
graphical form-based interface, can be associated with various implementations
languages (such as Java, XHTML, C#). The generated user interface is then up-
loaded on the target device.

In addition, when the host acting as a migration/proxy server passes the Web pages to
the client, it adds Ajax scripts, which are used to communicate to the server the inter-
face state accessed through DOM when the migration is triggered.

All the devices that are involved in the migration should run a migration client,
which is used for two purposes: in the device discovery phase, when the devices in-
terested in migration are identified and provide information about themselves, and to
trigger migration. Users can trigger migration through an interface separated from the
application interface, which shows the list of available devices from which the user
can select the target one.

5 Migration Preserving Rich Information State

In this section we discuss how our migration infrastructure has been modified in order
to support rich state information, which includes various aspects additional to the
changes due to the user input in some controls.

The use of Ajax scripts implies that the content of a Web page changes dynami-
cally without loading an entire new page. This means that when the migration server
starts the reverse engineering process to build the logical description of the current
page it should work on the page version currently loaded in the client browser and not
that in the application server, because they may be different.

 Preserving Rich User Interface State 259

Fig. 1. The Migration Architecture Preserving Rich Information State

Figure 1 describes the current architecture of the environment. After the device
discovery phase (1), there is an access to the Web page through the migration/proxy
server (2), which downloads the page from the application server (3, 4) and anno-
tates it by adding an Ajax script (5) whose goal is to collect the rich information state
of the client device and send its description to the migration/proxy server. Among
the functionalities that are included in such an AJAX script, we first mention a func-
tionality performing a continuous monitoring (polling), whose objective is detecting
whether or not a migration has been triggered by the migration client. In addition, a
piece of invisible script code (since it uses a IFRAME element) is added to the page
downloaded by the server with the aims of getting the cookies and the current his-
tory, storing their content, and continuously updating such information to maintain
the state consistent in an automatic and transparent way. This is managed, again, by
AJAX scripts: indeed, both the list of addresses (URLs) representing the history, and
the set of cookies generated during the user session can be rewritten in the IFRAME
and can be sent to the migration server without the user’s awareness. While the user
navigates through the source device browser without sending any migration request,
the loaded Web page sends an invisible HTTP request to the Migration Server,
which is suspended until a migration request is activated through the migration
client.

When a migration trigger is generated (6), the AJAX callback function is auto-
matically activated and thus sends (7) the DOM file (containing the state of the
current page), together with the portion of the invisible content (IFRAME) previ-
ously mentioned. Then, the migration server will first associate the content state of

260 F. Paternò, C. Santoro, and A. Scorcia

the page on the source device accessed through the DOM to the concrete description
of the version for the target device, and will add a new portion of invisible content
(IFRAME) containing the AJAX functions to re-create the rich state on the target
client device (8) in the corresponding generated implementation. Such rich state
information will be obtained through the functions able to read the cookies and re-
create them in the target device, as well as functions that will re-load within the
IFRAME the addresses connected with the chronology and create the history accord-
ingly on the target device.

Fig. 2. The Example Ajax Application

6 An Example Application

In this section we describe an example to show how our approach concretely works.
The scenario considered regards a user who starts interacting with a digital museum
application providing information about artworks. At some point the user accesses a
page, which allows him to specify preferences regarding artworks in the museum.
While the various preference options are specified, the application using an Ajax
script provides a preview of artworks that satisfy them (see Figure 2) without requir-
ing access to a new page. Then, the user asks for migration to a mobile device in order
to continue by means of indicating preferences on the move.

 Preserving Rich User Interface State 261

Fig. 3. The Ajax Application after Migration to a Mobile Device

The left side in Figure 3 shows the user interface activated in the mobile device
immediately after migration. Since the cookies are also migrated, the application still
recognises the user (John). The desktop page is too large for the mobile device and, con-
sequently, the adaptation component of the migration platform splits it into two pages for
the mobile device after analysing its logical structure obtained by the reverse engineering
functionality. One mobile page is dedicated to the interactive form enriched with the
Ajax script for the preview, which is the page immediately uploaded because the user
was interacting with it when migration was triggered. The other the page (Figure 3 right)
is the main page including the navigational structure of the application. In the uploaded
page some other adaptations take place: the check-box is lined up vertically because it
would not fit horizontally and the preview of only one artwork is shown at a given time.

7 Conclusions and Future Work

In this paper we have discussed the many aspects that characterise the state of a Web
application from the user point of view. Then, we have presented a solution for

262 F. Paternò, C. Santoro, and A. Scorcia

migration of Web applications, including those with Ajax scripts, able to preserve this
rich state information and have shown an example application.

Future work will be dedicated to testing the usability of the proposed solution and
its integration to a more general migration platform.

References

1. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., Winograd, T.: ICrafter: A service frame-
work for ubiquitous computing environments. In: Abowd, G.D., Brumitt, B., Shafer, S.
(eds.) UbiComp 2001. LNCS, vol. 2201, pp. 56–75. Springer, Heidelberg (2001)

2. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project Aura: Toward Distraction-
Free Pervasive Computing. IEEE Pervasive Computing 21(2), 22–31 (2002)

3. Bharat, K.A., Cardelli., L.: Migratory Applications. In: Proceedings of User Inteface Soft-
ware and Technology (UIST 1995), Pittsburgh, PA, USA, November 15-17, 1995, pp. 133–
142 (1995)

4. Kozuch, M., Satyanarayanan, M.: Internet Suspend/Resume. In: Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 2002). IEEE
Press, Los Alamitos (2002)

5. Chung, G., Dewan, P.: A mechanism for Supporting Client Migration in a Shared Window
System. In: Proceedings UIST 1996, pp. 11–20. ACM Press, New York (1996)

6. Bandelloni, R., Mori, G., Paternò, F.: Dynamic Generation of Migratory Interfaces. In: Pro-
ceedings Mobile HCI 2005, pp. 83–90. ACM Press, Salzburg (2005)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 263–270, 2008.
© IFIP International Federation for Information Processing 2008

From Desktop to Tabletop: Migrating the User
Interface of AgilePlanner

Xin Wang, Yaser Ghanam, and Frank Maurer

Department of Computer Science, University of Calgary, Canada
{xin,yghanam,maurer}@cpsc.ucalgary.ca

Abstract. Digital tabletops are emerging interactive systems that support group
collaborations. To utilize digital tabletops for agile planning meetings, we mi-
grated a desktop based planning tool – AgilePlanner to a digital tabletop. This
paper reports on challenges of the migration and illustrates differences between
user interactions on a digital tabletop and on a desktop. Moreover, lessons and
experiences learnt from our design process are highlighted to facilitate future
tabletop application design.

Keywords: desktop computer, digital tabletop, user interface design, agile
planning tool.

1 Introduction

Desktop computers have dominated computer applications for several years. Many
activities such as browsing websites and online shopping involve interactions between
a desktop system and a computer user. Typical desktop computers are characterized
by three basic facts: a vertical display, a single keyboard & mouse and a relatively
small screen. Personal computers are called “personal” because they primarily only
support interactions of a single individual with the computer.

However, today’s business looks at supporting an increasing number of group in-
teractions. A typical example is an agile planning meeting which requires the software
developers, project managers and customers working together as a group to derive
release and iteration plans for the next development step. To support agile planning
meetings, we had developed a desktop-based application – AgilePlanner [1]. How-
ever, some usability problems were observed:

• It is difficult for collocated meeting attendees to share the AgilePlanner interface
since it was limited by the small screen size of personal computers. Some agile
teams use projectors to get a large display. However, the screen resolution is still
limited. Also, the location of the projection screen focuses their attention to the
screen and face-to-face interactions are reduced.

• The single input devices impacted group interactions. To use AgilePlanner,
meeting participants have to share the mouse and keyboard. That was com-
mented “unnatural”, “inflexible” and “annoying”. It also slowed down interac-
tions when compared to index cards and pen.

264 X. Wang, Y. Ghanam, and F. Maurer

To overcome usability problems of the desktop AgilePlanner, we started to use a
digital tabletop with a large, horizontal and multi-touch screen (see Figure 1). In a
tabletop-based meeting, participants could sit or stand around the table, communicate
with each other and use their finger touches to interact with the tabletop. User interac-
tion with the tabletop is more intuitive than that with the desktop [2].

Fig. 1. The 183cm x 122 cm digital tabletop with 10 mega pixels output resolutions

Then we migrated our agile planning tool to a digital tabletop. The migration proc-
ess kept the core functions of desktop AgilePlanner, initially utilized the existing user
interface design, and then integrated tabletop usability features. Moreover, lessons
and experiences learnt from the migration provide insights into the interaction design
of tabletop applications.

This paper is organized as follows: Section 2 discusses related work on user inter-
face migrations. Section 3 illustrates the 4-phase process for migrating AgilePlanner.
Section 4 lists the key findings from the migration process. A conclusion is drawn in
Section 5.

2 Related Works

There is some research on the migration of user interfaces but none specifically
looking into migrating UIs to digital tabletops. Bandelloni et al presented a new envi-
ronment to support the migration of Web based user interface through different mo-
dalities [3]. Mori et al migrated a user interface between Digital TV and mobile
devices [4]. Other studies of user interface migrations involve the automatic transla-
tion and generation of different Web based user interface languages.

Web based applications are basically running on a similar hardware platform as
personal computers, PDAs and cell phones. The main difference is screen resolution
and the use of HTML instead of native widget libraries. The interactions for user
interfaces are similar. However, a digital tabletop has different user interaction
features:

• Tabletop supports touch and gesture recognition. Using a fingertip instead of
a mouse reduces accuracy and makes precise selections difficult.

• The relatively large physical size screen combined with touch input makes
reaching objects on the screen difficult as human arms have a limited length.

 From Desktop to Tabletop: Migrating the User Interface of AgilePlanner 265

• The orientation independent display makes it difficult to read text for some
meeting participants as it is upside down from their perspective.

• People are aware and often take ownership of parts of the table surface. “Ter-
ritoriality” in the tabletop workspace was studied in [5].

• Studies of multiple input approaches (mouse, keyboard, finger and pen) for
tabletop applications are required [6].

However, experiences about migrating desktop software applications to the digital
tabletop are – to the best of our knowledge – not yet reported. Our project, in particu-
lar, explored a concrete migration of a desktop based application to tabletop devices.

3 The Migration Process

In this section, we will show a migration process that converts the desktop AgilePlan-
ner to the tabletop environment. The migration was organized in four basic phases:
analyzing the desktop AgilePlanner, evaluating AgilePlanner on the digital tabletop,
redesigning the AgilePlanner UI and continued improvement of the redesign. Usabil-
ity evaluations are conducted often to validate changes for AgilePlanner. The evalua-
tions included task centered walkthroughs, questionnaire surveys, field studies and
interviews with AgilePlanner users.

3.1 Phase 1: Analyzing Desktop Based AgilePlanner

Desktop AgilePlanner is a groupware tool for agile planning meetings. Compared to a
traditional agile planning meeting that uses paper index cards and a table, the tool
provides a flexible, computer-aided, distributed environment. It is easy to operate, e.g.
create, modify and resize electronic index cards. Moreover, the meeting results, such
as the card contents and the card order that represent task significance, are saved and
can be recovered for the next planning meeting.

The user interface design of AgilePlanner (see Figure 2) provides basic functional-
ities. A large, scrollable workspace is provided to organize the index cards. A vertical
legend bar shows card icons that can be dragged to create index cards on the work-
space. The horizontal menu makes basic functions such as server connection and card
print available to the user. The main user interactions include creating, deleting,
resizing and moving index cards. A keyboard is used to conduct card editing and
modifications.

Desktop AgilePlanner is designed for the typical personal computer featuring a
small, vertical display with single keyboard & mouse control that supports individual
interactions. But in a multi-user collocated team, some limitations are observable. For
example, suppose there is an 11-person team which consisted of 2 collocated groups
(one in Vancouver with 5 people and the other in Calgary with 6 people). To conduct
an 11-person meeting which is distributed between Vancouver and Calgary but collo-
cated inside the two groups, the attendees have to use their individual computers and
thus, face to face communication of the collocated teams is changed. A possible alter-
native is using projectors to enlarge and project the AgilePlanner interface to a shared
screen. However, the projected screen becomes the focus of attention of onsite team
members, thus reducing the effectiveness of collocated communication. Moreover,

266 X. Wang, Y. Ghanam, and F. Maurer

some natural behaviors in traditional agile meetings, such as passing card among
several participants, rotating cards and concurrently operating cards, are not supported
by AgilePlanner or similar tools as a single user is controlling the mouse & keyboard.

Fig. 2. User interface of desktop AgilePlanner

3.2 Phase 2: Evaluating AgilePlanner on the Tabletop

In this phase, we conducted a usability evaluation of the desktop AgilePlanner tool
after deploying it on a digital tabletop. The goal of this evaluation is to highlight the
differences of desktop and tabletop systems, in particular, the size of screens,
the horizontal versus vertical display, as well as the single versus concurrent users.
The evaluation was designed as a task-centered walkthrough that employed 6 testers.
During the evaluation, the testers were required to complete some sample tasks using
the desktop AgilePlanner which was running on the digital tabletop. We discovered
several usability problems through this study. Design guidelines for a redesigned
tabletop-based AgilePlanner were developed based on an analysis of the problems.
The following subsections illustrate the basic differences of desktops and tabletops.

Vertical vs. horizontal display
A typical desktop computer often provides a vertical screen which only requires a top-
down (vertical) orientation: there is a defined upper edge and a defined lower edge.
Desktop applications are designed with this in mind. Using AgilePlanner as an example,
story cards are all placed vertically. However, horizontal displays are orientation inde-
pendent and require rotating cards to show them to people on the other side of the table.

Single vs. concurrent interaction
Desktop computers are based on single mouse-keyboard interactions. The desktop
AgilePlanner can only respond to one mouse-keyboard action at the same time.

Iteration

Story card

Workspace

Legend Bar

Menu bar

 From Desktop to Tabletop: Migrating the User Interface of AgilePlanner 267

However, a real collocated planning meeting often involves several participants who
operate story cards simultaneously. The lack of simultaneous interactions reduced the
agile developers’ motivation to use AgilePlanner. For example, if a meeting partici-
pant wants to edit a story card, she must negotiate with other participants to get the
keyboard and mouse control. Moreover while she was editing story cards, other par-
ticipants could not input information till the completion of her operation. Our testers
noticed the inconvenience caused by the single mouse-keyboard interaction. They
commented it “unnatural” and “interrupt communications”.

However, the digital tabletop support multi-touch input. Meeting attendees are able
to use their fingers to operate the story cards simultaneously. For example, two or
more meeting attendees could use their fingertips to write text, and their handwriting
strokes would be kept and converted to text.

Small vs. large display
Several usability problems from the evaluation are related to the different screen sizes
of desktops and tabletops. For instance, a popup dialog box is a common interaction
component. AgilePlanner often shows these at the center of the computer screen.
However, our physical tabletop surface is at least 8 times larger than a normal screen
of a desktop computer. Thus, the pop up position of the dialog box might be out of
reach of a user sitting at the end of the table. One of our study subjects mentioned that
he was often stopped by the pop-up dialog box. He commented that “finding and
clicking the pop-up dialog box are both annoying”.

Recommendations
The following guidelines for redesigning the AgilePlanner user interface were derived
from our study:

1. UI components of AgilePlanner should be moveable and rotatable.
2. Use gesture recognition for user interactions and avoid traditional menus.
3. Use handwriting instead of the keyboard to input text.
4. Consider concurrent interaction while designing the UI.
5. The size of widgets of the tabletop AgilePlanner should be large enough to

facilitate touch input.
6. Avoid using pop up dialog boxes and other similar components.
7. Since the size of tabletops varies a lot, it is necessary to make the application

interface scalable.

3.3 Phase 3: Redesigning the AgilePlanner User Interface

Based on the guidelines from the phase 2, AgilePlanner was redesigned. We found
that Microsoft WPF (Windows Presentation Foundation) better supported tabletops
than Java SWT (the framework underlying the desktop version of AgilePlanner).
WPF provides a sound basis for tabletop applications. UI components of WPF can
easily be transformed in size, position and angularity. Handwriting, gesture and voice
recognition engines are provided by the WPF environment.

We abandoned the traditional WIMP (window, icon, menu, pointer device) ap-
proach in the desktop applications. The menus and legend bars are integrated into a
control palette which can be moved and rotated on the table surface to allow access
from any seat around the table. A rotation and translation (RNT) algorithm was

268 X. Wang, Y. Ghanam, and F. Maurer

implemented to facilitate the movement of the story cards, iterations and the control
palette. Moreover, we implemented handwriting recognition to translate strokes into
text. The original handwritings are kept and displayed on the story card surface. The
control flow of AgilePlanner is also simplified. Instead of clicking buttons with a
mouse, users can make simple gestures to complete the card operations. Figure 3 lists
some gestures defined for card operations. A story card is created by a “Chevron-
Down” gesture. The “Square” gesture creates iteration. To delete an index card, a
“ScratchOut” gesture is required to exceed the whole card boarder. Our evaluation
indicates that gestures are flexible, learnable and easy to use. Moreover, pop up dialog
boxes are replaced by customized windows which have a large size and can be moved
on the table surface. System warnings are displayed on the control palette. The new
user interface of tabletop AgilePlanner is shown on the Figure 4:

 (a) (b) (c)

Fig. 3. Gestures commands for Tabletop based AgilePlanner (a) create story card, (b) create
iteration, (c) delete card

Fig. 4. User interface of tabletop based Agile Planner

To validate the new UI, we conducted a pilot evaluation which included 14 sub-
jects. They were asked to complete sample tasks and filled out a questionnaire after-
wards. Unstructured interviews were used to collect the testers’ comments. The
results of the pilot evaluation showed the users’ satisfactions with the new UI and
interaction design. Most of the testers felt comfortable when using the tabletop based
AgilePlanner. Some negative comments and usability issues were arisen. For exam-
ple, some testers suggested the “deleting card” gesture (see Figure 4(d)) was confus-
ing while others commented the handwriting “cool but sometimes unreadable”.

Handwriting

Iteration

Story card

Control Palette

 From Desktop to Tabletop: Migrating the User Interface of AgilePlanner 269

3.4 Phase 4: Continued Improvement

We continue development to solve the usability problems found in Phase 3. We ana-
lyzed the card deletion gestures and found out that most of testers were not aware the
deletion gesture should go through the whole card. Moreover, when the card is very
large, drawing the deletion gesture will be difficult. As an alternative approach, a card
deletion button is placed at the right corner of an index card. We also studied the
problems of handwriting readability and found out that the fingertips of testers were
very thick so that it was difficult to draw tiny ink strokes accurately. Moreover, some
testers mentioned that using their fingers to write on the table surface was unnatural
because, while writing with fingers, their fists were not allowed to touch the table.

We reevaluated the system after making corresponding changes. 9 testers showed
their satisfactions (see Figure 5) to the functionalities provided by AgilePlanner. But
the usability of handwriting on tabletop still requires the improvements.

Fig. 5. Formal evaluation result

4 Discussion

From the migration process, we gathered experiences that can help other developers
of tabletop applications.

The horizontal display brings the orientation independence to the user interface.
Thus, rotating the UI elements of AgilePlanner became necessary. The physical
screen sizes of tabletops vary a lot. On a large tabletop (like ours), menu bars or
popup windows with fixed positions and small sizes are hard to find and click. Thus,
the UI components need to be scalable to fit different tabletop surfaces.

Tabletop devices are touch sensitive. Tabletop developers can make use of the
touch recognition to support a gesture and handwriting. However, ”unnatural” gesture
definitions might cause severe confusions. Thus, although a gesture and finger inter-
action is often more flexible than the mouse actions, its implementation must be based
on careful design and evaluation.

270 X. Wang, Y. Ghanam, and F. Maurer

5 Conclusion

The digital tabletop is gaining its popularity as an emerging technology to support
group activities. However, not many tabletop based applications for real end users
exist. We migrated the desktop AgilePlanner to the tabletop environments to gain a
better understanding of issues involved in application engineering for tabletop-based
software systems.

The migration had 4 phases. The first phase helped to understand the UI and inter-
action design of the source application. In the second phase, we evaluated the existing
application in the new environment. A new tabletop AgilePlanner was designed in
Phase3. The focus of the redesign was on utilizing the capabilities of tabletops and
improving the application usability. In Phase 4, continued improvements were made
to fulfill new user requirements or solve usability problems.

We discussed the differences of the desktop and tabletop interactive systems. Some
UI design experiences provide rough guidelines to help tabletop application develop-
ers in migrating other applications.

References

1. Liu, L., Erdogmus, H., Maurer, F.: An environment for collaborative phase planning. In:
Proceedings of Agile Conference, pp. 80–89. ACM, New York (2005)

2. Morgan, R., Walny, J., Kolenda, H., Ginez, E., Maurer, F.: Using Horizontal Displays for
Distributed & Collocated Agile Planning. In: Concas, G., Damiani, E., Scotto, M., Succi, G.
(eds.) XP 2007. LNCS, vol. 4536, pp. 38–45. Springer, Heidelberg (2007)

3. Bandelloni, R., Paternò, F., Santoro, C., Scorcia, A.: Web User Interface Migration through
Different Modalities with Dynamic Device Discovery. In: Proceedings AEWSE 2007,
Como, pp. 58–72 (2007)

4. Mori, G., Paternò, F., Santoro, C., Sansone, S.: Migrating the User Interface between the
Digital TV and Mobile Devices. In: Proceedings Interacive TV: A shared experience, Am-
sterdam, Holland, pp. 73–77 (2007)

5. Scott, S.D.: Sheelagh M., C.T.I. Kori: Territoriality in collaborative tabletop workspaces
Tabletop design. In: Proceedings of ACM Conference on Computer-Supported Cooperative
Work, pp. 294–303. ACM Press, New York (2006)

6. Tse, E., Shen, C., Greenberg, S., Forlines, C.: Enabling interaction with single user applica-
tions through speech and gestures on a multi-user tabletop. In: Proceedings of the confer-
ence on Advanced visual interfaces, pp. 336–343. ACM Press, New York (2006)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 271–278, 2008.
© IFIP International Federation for Information Processing 2008

Learning Key Contexts of Use in the Wild for
Driving Plastic User Interfaces Engineering

Vincent Ganneau1,2, Gaëlle Calvary2, and Rachel Demumieux1

1 Orange Labs, 2 avenue Pierre Marzin, 22307 Lannion Cedex, France
{Vincent.Ganneau,Rachel.Demumieux}@orange-ftgroup.com

2 Laboratoire LIG, 385 rue de la Bibliothèque, BP 53, 38041 Grenoble Cedex, France
{Vincent.Ganneau,Gaelle.Calvary}@imag.fr

Abstract. This paper addresses software plasticity, i.e. the ability of interactive
systems to adapt to context of use while preserving user-centered properties. In
plasticity, a classical approach consists in concentrating design efforts on a set
of pre-defined contexts of use that deserve high quality User Interfaces (UIs),
and switching from one to another according to variations of context of use at
runtime. However, key contexts of use cannot be finely envisioned at design
time, especially when dealing with the specific field of mobility. Thus, we pro-
pose a designer’s partner tool running on the end-user’s mobile device to probe
key contexts of use in the wild. The underlying principles are data gathering,
bayesian learning, and clustering techniques. Probing key contexts of use can
save design efforts.

Keywords: Mobility, plasticity, context of use, probing, bayesian network,
learning, clustering.

1 Introduction

In ubiquitous computing [11], context-aware adaptation has been widely investigated
to cope with the increasing number of platforms, users, and environments, i.e. the
diversity of contexts of use. This paper addresses the notion of plasticity, i.e. the abil-
ity of interactive systems to withstand variations of context of use while preserving
user-centered properties [10]. In plasticity, most of the works so far make the implicit
hypothesis that the contexts of use to be considered are identified at design time. In
practice, this is far from being easy. As known in human-computer interaction, labo-
ratory tests make it possible to observe usability issues with the system [9] but are
limited to understand usage and system’s impacts in a very few envisioned contexts of
use such as home, street, work, etc. [5]. In the specific field of mobility, the number
of contexts of use is unpredictable. Limiting them to predefined rough ones may re-
sult in not fully meeting the user’s expectations. As a result, there is a need for partner
tools that help the designers in identifying the key contexts of use in the wild on mo-
bile devices such as cell phones.

Recent works in the field of end-user development underline the need for moni-
toring the end-user’s environment (task, place, time, etc.) in order to provide

272 V. Ganneau, G. Calvary, and R. Demumieux

context-aware adaptivity [6]. In addition, experience shows that users tend to have
distinct contexts of use when in mobility. In this paper, we propose a Windows
Mobile embedded tool that collects objective data from user’s actions in the wild
and provides algorithms for learning key contexts of use from these observations.
The process is based on bayesian user modeling and clustering techniques. The tool
aims at separating relevant contexts of use from marginal situations by asking the
end-user through a dedicated User Interface (UI). Such a probing task has to be
taken in the early phases of the development process to save design efforts. Some
frequent or critic contexts may require specific prototyping for ensuring high
quality UIs.

2 EMMA: Embedded Manager for Mobile Adaptation

EMMA (Embedded Manager for Mobile Adaptation) is our running system for prob-
ing key contexts of use on Windows Mobile devices. EMMA relies on a user model
that learns from user’s actions gathered in mobility. The overall process is based on
the functional decomposition given in Fig. 1. Three steps are identified. The system
starts by collecting objective data from the observation of context of use and person-
system interaction. Then these data are processed by the user model through learning
algorithms. Finally, clustering techniques are performed to discover the best set of
key contexts of use given knowledge inferred from the user model.

Fig. 1. Overall process for the identification of key contexts of use

 Learning Key Contexts of Use in the Wild 273

Key context identification may be placed under the end-user’s control through a
dedicated UI (Fig. 2) that helps in reinforcing system’s perception as well as validat-
ing the correctness of data. When a new key context of use is detected, the end-user is
put in the loop: he/she can customize system’s propositions and set the name of the
new context (Fig. 3).

Fig. 2. Key context identification and change may be negotiated with the end-user

Fig. 3. When adding a new key context, system’s propositions may be customized by the end-
user. A key context is identified by its name.

3 Bayesian User Modeling

EMMA’s user model is based on a bayesian network. Bayesian networks are graphi-
cal models that consist in both a qualitative and a quantitative part. The qualitative

274 V. Ganneau, G. Calvary, and R. Demumieux

part is the structure of the network: a directed acyclic graph where vertices are vari-
ables and edges denote influences between variables. The quantitative part provides
the Conditional Probabilities Tables (CPTs), i.e. the parameters of the network.

Bayesian networks are powerful tools provided with inference and learning algo-
rithms. Inference relies on Bayes’ theorem for propagating knowledge along the net-
work. Learning applies for both the structure and the parameters of the network. It can
be done from either complete or incomplete raw data. Bayesian networks are usually
used for diagnosis, prediction, modeling, and monitoring. A key point is their ability
to deal with incompleteness, which argues for their use when dealing with imperfect
context information [3]. Bayesian user modeling has been investigated in previous
works [4]. On mobile phones, bayesian learning has been used to discover when and
how a user changes his/her profile over time [1].

3.1 Structure Building

In practice, bayesian models can be built from expert knowledge and/or automatically
from data. As experts, we designed the structure of the user model for daily probing
the user’s behaviour when interacting with a mobile device in the wild (Fig. 4).

Fig. 4. EMMA’s bayesian user model: the impact of context of use (day, time, location) on
user’s activity (tasks, preferences) is represented by causal links among nodes. User’s location
is time-context dependent.

In our model, we assumed that user’s tasks and preferences may vary according to
the context of use. We probed two kinds of context changes: changes in time (day of
the week, time of the day) and space (location). Probing might easily be enlarged to
additional information. In addition, we assumed that context changes might give rise
to repetitive tasks (e.g. switching to silent mode when joining a meeting). Thus, each
node of the model was dedicated to a particular function. We distinguished two kinds
of functions depending on whether the node was in charge of sensing and identifying
the context of use (i.e. Day, Time, and Location nodes), or tracking user’s tasks and
preferences (i.e. Task and Preference nodes). Extending the prototype to other context
changes and tasks would be simply done by adding new nodes and causal links in the
network. The structure defines the format of the gathered data.

 Learning Key Contexts of Use in the Wild 275

3.2 Data Gathering

Data gathering in mobility has been investigated in previous works [2]. As motivated
above, we need to collect two kinds of data to be processed by the user model: context
and interaction data. As discussed, time and space contribute to the context identifica-
tion when processed by the user model. Day and time changes are probed through the
corresponding system states. We parse time into five intervals as following: night (0h-
6h), early morning (6h-8h), morning (8h-12h), afternoon (12h-18h), and evening
(18h-24h). Alike in [7], we use the nearest GSM cell-tower to track changes in the
user’s location. At any time, the mobile phone is connected to a particular cell-tower
unless the user is not in a mobile phone receiving area. Each cell-tower is identified
by its Cell IDentifier (CID) and its Location Area Code (LAC). Both CID and LAC
are integers. We use the Radio Interface Layer (RIL) provided with Windows Mobile
powered devices to catch cell changes. We match each cell change with the day and
time within which it occurs.

We probe two kinds of interactions on mobile phones (Fig. 4): applicative tasks –
Task node – (e.g., messaging, calls, games, etc.) and customization tasks – Preference
node – (e.g., phone’s profile, look and feel, etc.). Every time the active application
changes, the interaction observer reports the application the user is interacting with in
the interaction history. Observations are matched with day, time, and location (see
Table 1). User’s preferences are gathered in the same way.

Table 1. Interaction history gathered in mobility

Location Day Time Application
CID40506LAC4354 Thursday morning Settings
CID40511LAC4354 Thursday morning Calendar
CID40511LAC4354 Thursday morning Contacts
CID58063LAC4354 Thursday morning Call History
CID40511LAC4354 Thursday afternoon Calendar
CID40506LAC4354 Thursday afternoon Messaging
CID40511LAC4354 Thursday afternoon Settings
CID58063LAC4354 Thursday afternoon Games
CID58063LAC4354 Thursday evening Settings
CID64457LAC4354 Thursday evening Call History
CID22057LAC4354 Thursday evening Messaging

3.3 User Model Implementation

From an implementational point of view, the bayesian user model is developed with
Netica™ [8], a software provided by Norsys Software Corp. Netica is a complete
software package which includes a graphical editor and an Application Programming
Interface (API). The API is available under several operating systems and is accessi-
ble within different programming languages. We use a C version specially crafted for
Windows Mobile devices. The Netica-C API is a compact Dynamic Link Library
(DLL) of ultra-fast C-callable functions.

276 V. Ganneau, G. Calvary, and R. Demumieux

3.4 Parameters Learning

In order to process bayesian inference, we need to specify the joint probability distri-
bution of each node of the network. As discussed earlier, the structure of the network
drives data gathering. In turn, the collected data are processed by a parameter learning
algorithm to adapt the CPTs. Netica supports parameter learning from raw case files.
Once parameters are learnt, the user model can be used to infer knowledge.

User’s tasks and needs evolve over time as user’s experience increases. This is an
important issue to take into account. Before running the parameter learning algorithm,
we therefore fade the CPTs of nodes to indicate greater uncertainty, which accounts
for the idea that user’s tasks and needs may evolve over time. Thus, what has been
recently learned is more strongly weighted than what was learned long ago. The
amount of fading to be done is 1 – rΔt, where Δt is the amount of time since the last
fading was done, and r is a number less than but close to 1.

4 Clustering

We have experimented clustering techniques for merging atomic contexts of use
(days, times, locations) into key contexts of use. Merging is based on past user’s ac-
tions similarities. For instance, we merge two locations in which the user has set the
same phone’s profile and used almost the same set of applications. Many clustering
methods exist. We use two of them: K-Means and Hierarchical clustering. K-Means
clustering is a partitioning method while Hierarchical clustering is an agglomerative
one. We use Hierarchical clustering at the beginning when no key context of use has
been identified yet. Then we use K-Means to reinforce existing key contexts. Before
performing clustering, we first eliminate non-significant variables, i.e. variables of the
context (day, time, or location) for which the standard deviations computed for tasks
and preferences are close to zero. Standard deviations are computed as follow:

() ()∑
=

−=
N

i
i xx

N
X

1

21σ

where X is either Task or Preference, N is the number of states for node X, and xi are
the conditional probabilities pi of P(X | variable).

Hierarchical clustering starts by putting each data in a separate cluster. Then, at
each step, the algorithm chooses the pair of closest clusters and merges them into a
new one (Fig. 5). Hierarchical clustering produces clusters for all possible number of
clusters. Distances between clusters can be computed from one of single-link, com-
plete-link, average-link, and centroid methods.

We use K-Means clustering to reinforce existing key contexts. K-Means assumes a
fixed number of clusters, k. The goal is to create compact clusters. The classic K-
Means algorithm starts by randomly initializing clusters. Here, we start by initializing
the first n clusters with existing key contexts, and then we randomly initialize the k –
n remaining ones. Then each data is assigned to the nearest cluster based on a similar-
ity measure. Clusters are then recomputed (Fig. 6). The algorithm repeats the last two
operations until convergence.

 Learning Key Contexts of Use in the Wild 277

Fig. 5. Two steps of hierarchical clustering

Fig. 6. First step of K-Means clustering

5 Results and Perspectives

EMMA is still under evaluation. However, the early results based on six people show
that users tend to have two key contexts of use at least. This calls for further evalua-
tion to (1) understand whether contexts of use can be matched with user’s profiles, (2)
measure minimum and maximum numbers of contexts of use, and (3) elaborate a
methodology that takes into account this first probing in the wild. In the near future,
EMMA will act as an end-user’s tool for managing context-aware adaptation. Envi-
sioned adaptations are phone’s profile managing and phone’s menu reordering.

References

1. Bridle, R., McCreath, E.: Improving the Mobile Phone Habitat – Learning Changes in
User’s Profiles. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp.
970–974. Springer, Heidelberg (2005)

2. Demumieux, R., Losquin, P.: Gather Customer’s Real Usage on Mobile Phones. In: Pro-
ceedings of the 7th International Conference on Human Computer Interaction with Mobile
Devices & Services, Salzburg, Austria, September 19 – 22. MobileHCI 2005, vol. 111, pp.
267–270. ACM, New York (2005)

278 V. Ganneau, G. Calvary, and R. Demumieux

3. Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Information. In:
Workshop on Context Modeling and Reasoning (CoMoRea), Proceedings of the 2nd IEEE
Annual Conference on Pervasive Computing and Communications Workshops, Orlando,
FL, March 14–17. PerCom 2004, pp. 33–37. IEEE Computer Society, Washington (2004)

4. Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumière Project:
Bayesian User Modeling for Inferring the Goals and Needs of Software Users. In: Proceed-
ings of the 14th Annual Conference on Uncertainty in Artificial Intelligence, Madison, WI,
July 1998. UAI 1998, pp. 256–265. Morgan Kaufmann, San Francisco (1998)

5. Kellar, M., Reilly, D., Hawkey, K., Rodgers, M., MacKay, B., Dearman, D., Ha, V.,
MacInnes, W.J., Nunes, M., Parker, K., Whalen, T., Inkpen, K.M.: It’s a Jungle Out There:
Practical Considerations for Evaluation in the City. In: CHI 2005 Extended Abstracts on
Human Factors in Computing Systems, Portland, OR, April 2 – 7. CHI 2005, pp. 1533–
1536. ACM, New York (2005)

6. Klann, M., Paternò, F., Wulf, V.: Future Perspectives in End-User Development. In: Lie-
berman, H., Paternò, F., Wulf, V. (eds.) End User Development. Human-Computer Inter-
action Series, vol. 9, pp. 475–486 (2006)

7. Laasonen, K.: Where Are You Going? Predicting user movement from cellular data. In:
Proceedings of the Proactive Computing Workshop, Helsinki, Finland, November 25 – 26.
PROW 2004, pp. 121–124 (2004)

8. Netica, http://www.norsys.com
9. Nielsen, J.: Usability Engineering. Morgan, San Francisco (1994)

10. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Sasse, A., Johnson, C. (eds.) Proceedings of the 7th IFIP International Conference on
Human-Computer Interaction, Edinburgh, Scotland, August 30 – September 3, 1999. IN-
TERACT 1999, pp. 110–117. IOS Press Publ., Amsterdam (1999)

11. Weiser, M.: The Computer for the 21st Century. Scientific American 256(3), 94–104
(1991)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 279–286, 2008.
© IFIP International Federation for Information Processing 2008

The Ecology of Participants in Co-evolving
Socio-technical Environments

Gerhard Fischer1, Antonio Piccinno2, and Yunwen Ye1,3

1 Center for LifeLong Learning & Design (L3D), Department of Computer Science, University
of Colorado, Boulder, USA
gerhard@colorado.edu

2 Dipartimento di Informatica, Università di Bari, Bari, Italy
piccinno@di.uniba.it

3 SRA Key Technology Lab, Tokyo, Japan
yunwen@colorado.edu

Abstract. The traditional notions of developer and user are unable to reflect the
fact that many software systems nowadays are developed with the participation
of many people of different interests and capabilities. The sharp distinction be-
tween users and developers gets blurred. Many researchers have used different
concepts such as end-user developer, prosumer, pro-am to describe those new
in-between roles. This paper provides a conceptual framework for characteriz-
ing varied activities that all people involved in using and developing software
systems from a socio-technical perspective. The conceptual framework clarifies
the spectrum of different use and development activities by a continuum of
participants with different roles. Based on the framework, we analyze how par-
ticipants change their roles to migrate from users to developers through interac-
tions, and how such interactions co-evolve both the community and software
artifacts.

Keywords: Open-source software, ecology of participants, Software Shaping
Workshop, end-user development, meta-design.

1 Introduction

Users and developers are considered two distinct groups of people: users are those
people who own a problem, and developers are those who implement software sys-
tems for supporting users to solve problems. Nowadays, with the widespread use of
web-based software systems, the sharp distinction between users and developers is
quickly disappearing: they are no more considered as two mutually exclusive groups
of people. A lot of users are not only using software but also getting involved in de-
signing software. In this way users increasingly take an active role in the development
of software tools suited to their needs. This results in a continuum ranging from pas-
sive consumer, to meta-designer [1], to developer. It is also the case that the same
person is and wants to be a consumer in some situations and in others a designer;
therefore “consumer/designer” is not an attribute of a person, but a role assumed in a

280 G. Fischer, A. Piccinno, and Y. Ye

specific context. Our aim is to study and characterize virtual organization in which
richer ecologies of participants, i.e., professional amateurs [2], prosumers [3], power
users, local developers, and gardeners [4], and communities of practice [5], can de-
velop according to their own needs. A deeper understanding of this ecology, needs to
be exploited to create multi-faceted computational environments [6] tailored to the
interests, needs and expertise of different stakeholders to support the migration path
[7] between the different roles.

To face with end-user needs, the challenge is to develop software environments
that support end users in performing their activities of interest, but also allow to tailor
their software environments to better adapt them to their needs, and even to create or
modify software artifacts. The latter are defined as activities of End-User Develop-
ment (EUD), to which a lot of attentions are currently devoted by various researchers
in Europe and all over the world. EUD requires the active participation of end users in
the software development process and tasks that are traditionally performed by pro-
fessional software developers need to be transferred to the users, who need to be spe-
cifically supported in performing these tasks.

To allow EUD activities, we have to consider a two-phase process, the first de-
voted to design the design environment, the second one to design applications using
the design environment. These two phases are not clearly distinct, and are executed
several times in an interleaved way; because the design environments evolve both as a
consequence of the progressive insights the different stakeholders gain into the design
process and as a consequence of the comments of end users at work. This two-phase
process requires a shift in the design paradigm, which must move from user-centered
and participatory design to meta-design [8]. Through meta-design, design environ-
ments can be created that permit applications to be designed and evolved at the hands
of end users in accordance with their own culture, skills and languages.

This paper is organized as follows. Section 2 presents a spectrum of participants in
socio-technical environments. Section 3 presents Open Source Systems as an example
of socio-technical environments, the ecology of involved participants. Section 4 dis-
cusses the role migration in the considered ecology of participants, and Section 5
provides conclusions.

2 A Spectrum of Participants in Socio-technical Environments

To support EUD with meta-design, it is imperative to break down the sharp bounda-
ries between users and developers. Being a user or a developer is a continuum ranging
from passive consumer, to well-informed consumer [9], to end user, to power users
[4], to domain designer [10] all the way to meta-designer (a similar role distribution
for domain-oriented design environments is defined in [1]). Moreover, the same user
is often a consumer in some situations and in others a designer.

A critical challenge is to support a migration path [7] between the different men-
tioned roles: consumers, power-users, and designers are nurtured and educated, not
born, and people must be supported to assume these roles. Supporting migration re-
quires to view software systems not only as a technical system but also a socio-
technical environment [11] in which the functionality of the software system is
shaped by the interaction of all stakeholders that constitute an ecology of participants

 The Ecology of Participants in Co-evolving Socio-technical Environments 281

for the software system. Figure 1 depicts the ecology of participants in a software
system from the socio-technical perspective. The x axis represents the user expertise
in software design and y axis represents the technical complexity of participating
activities. A zone delineates a participation space. The top-right space is called
“Software design space” in which development activities are mainly carried out by
professional software developers and meta-designers. The bottom-left space is the
“Software consuming space” whose participants are mainly passive consumers or
users of software systems and they are not actively involved in the development
process of the software. In between, an EUD space exists, in which users, thanks to
available techniques made available in their software system are able to modify their
software. Rather than being distinct, these three areas usually overlap and their
boundaries are blurred.

3 OSSs as Co-evolving Socio-technical Environments

EUD and meta-design shares many common features with Open-Source Software
(OSS) development practices that actively seeking the participation and contributions
of users at different levels. There are abundant lessons in OSS to be discovered and
learned for the success of EUD systems, especially in the aspects of understanding
what motivates so many people to dedicate their time, skills, and knowledge to OSS
systems, and how users of OSS system become developers.

OSS grants not only developers but also all users, who are potential developers, the
right to read and change its source code. Developers, users, and user-turned-
developers form a community of practice [5]. A community of practice is a group of
people who are informally bounded by their common interest and practice in a spe-
cific domain. Community members interact with each other for knowledge sharing
and collaboration in pursuit of solutions to a common class of problems. An OSS
project is unlikely to be successful unless there is an accompanied community that
provides the platform for developers and users to collaborate with each other. Mem-
bers of such communities are volunteers whose motivation to participate and

consumer designer

Passive consumer

C
om

pl
ex

ity

end-user

Domain designer

Meta-designer

Power user

Well-informed consumer

Software engineer

Software design space

Software
consuming

space

EUD space

consumer designer

Passive consumer

C
om

pl
ex

ity

end-user

Domain designer

Meta-designer

Power user

Well-informed consumer

Software engineer

Software design space

Software
consuming

space

EUD space

Fig. 1. The ecology of participants in a socio-technical environment

282 G. Fischer, A. Piccinno, and Y. Ye

contribute is of essential importance to the success of OSS projects. In OSS users are
usually developers, professionals or beginners. OSS refers to software systems that
are free to use and whose source code is fully accessible to anyone who is interested.
Most OSS systems start out with developers who want to solve their own particular
problem and make the system available to others for free. It often attracts many users
who have a similar problem, and because of the free access of source code, some
interested users become co-developers by extending or improving the initial system.
Together with the original developer, users and co-developers create a collaborative
and evolving OSS community around the system [12]. OSS exploits meta-design
techniques to empower their users to be able to develop the system, even if they are
not professionals.

3.1 Mapping the Ecology of Participants in OSS

We will use OSS as an example to illustrate the ecology of participants in socio-
technical environments. In OSS, the right to access and modify source code itself does
not make OSS projects different from most “Closed Source Software” ones. All de-
velopers in a project in any software company would have the same access privilege.
The fundamental difference is the role migration of the people involved in a project.
In Closed Source Software projects, developers and users are clearly defined and
strictly separated. In OSS projects, there is no clear distinction between developers
and users: all users are potential developers. Borrowing terms from programming
languages, developers and users are types, and persons involved in a project are data
objects, Closed Source Software projects are static, binding languages in which a
person is bound to the type of developers or users statically, and OSS projects are
dynamic-binding languages in which a person is bound to the type of developer
or user dynamically, depending on his or her involvement with the project at a
given time.

Most OSS systems are not completely designed in advance. They evolve in re-
sponse to the needs of users in the OSS community, and the evolution is carried out
by contributing (co-)developers of the same community. Although the evolution of an
OSS system is not well planned, “giving users of a product access to its source code
and the right to create derivative works allows them to help themselves, and encour-
ages natural product evolution as well as preplanned product design [13].”

To understand how the “natural product evolution” happens in OSS systems, we
have conducted case studies [12] and presented a broader perspective by examining
not only the evolution of OSS systems, but also the evolution of the associated OSS
communities, as well as the relationship between the two types of evolution. Although
an OSS project might have a leader (often the one who initiates the project), the
leader neither has a grand plan for the system at the beginning, nor dictates the evolu-
tion of the system. It is the whole OSS community that collaboratively drives, as both
users and developers, the evolution of the system. Therefore, a full understanding of
the evolution of an OSS system cannot be complete without understanding the evolu-
tion of the OSS community and its role in driving the evolution of the system.

Participants of an OSS community assume a role by themselves according to their
personal interest in the project, rather than being assigned by someone else; the dif-
ferent roles are the following [12]:

 The Ecology of Participants in Co-evolving Socio-technical Environments 283

consumer designer

Passive users

C
om

pl
ex

ity

Bug reporters

Active developers

Core members

Bug fixers

Readers

Software
engineer

Software Design space

Software
consuming

space

EUD
space

Peripheral
developers

Project Leaders

System evolution

using

contributing

contributing

affecting

affecting

affecting

consumer designer

Passive users

C
om

pl
ex

ity

Bug reporters

Active developers

Core members

Bug fixers

Readers

Software
engineer

Software Design space

Software
consuming

space

EUD
space

Peripheral
developers

Project Leaders

consumer designer

Passive users

C
om

pl
ex

ity

Bug reporters

Active developers

Core members

Bug fixers

Readers

Software
engineer

Software Design space

Software
consuming

space

EUD
space

Peripheral
developers

Project Leaders

System evolution

using

contributing

contributing

affecting

affecting

affecting

System evolution

using

contributing

contributing

affecting

affecting

affecting

Fig. 2. Role migration in the co-evolution of participants and systems

• Passive User just uses the system in the same way as most of us use commercially
available Closed Source Software. They are attracted to OSS mainly due to its high
quality and the potential to be changed when needed.

• Reader refers to those active users of the system; they not only use the system, but
also try to understand how the system works by reading the source code. Given the
high quality of OSS systems, some Readers read the systems to learn program-
ming. Another group of Readers exists who read an OSS system not for the pur-
pose of improving the system per se but for understanding its underlying model
and then using the model as a reference model to implement similar systems [14].

• Bug Reporter discovers and reports bugs. They assume the same role as testers of
the traditional software development model. The existence of many Bug Reporters
assures the high quality of OSS, because “given enough eyeballs, all bugs are
shallow” [15].

• Bug Fixer, that are called to fix bugs that either they discover by themselves or are
reported by other members.

• Peripheral Developer, that occasionally contributes new functionality or features
to the existing system. Their contribution is irregular, and the period of involve-
ment is short and sporadic.

• Active Developer, that is the person that regularly contributes new features and
fixes bugs; they are one of the major development forces of OSS systems. Core
Member, that is responsible for guiding and coordinating the development of an
OSS project. Core Members are those people who have been involved with the
project for a relative long time and have made significant contributions to the de-
velopment and evolution of the system.

• Project Leader, that is the person who has initiated the project and is responsible
for the vision and overall direction of the project.

Not all of the eight types of roles exist in all OSS communities, and the percentage of
each type varies. Different OSS communities may use different names for the above
roles. For example, some communities refer to Core Members as Maintainers. The

284 G. Fischer, A. Piccinno, and Y. Ye

difference between Bug Fixers and Peripheral Developers is rather small because
Peripheral Developers might be mainly engaged in fixing bugs. Mapping those roles
into the ecology of participants of Figure 2, we can see that Readers and Passive Us-
ers participate in the Software Consuming Space; Bug Fixers and Bug Reporters par-
ticipate in the EUD Space; and Project Leaders, Core Members, Active Developers
and Peripheral Developers participate in the Software Design Space.

3.2 Supporting the Ecology of Participants with SSW Methodology

To support co-evolution of users and systems in socio-technical environments and to
allow EUD activities, we have proposed the Software Shaping Workshop (SSW)
design methodology [16]. This approach views the development of an interactive
system as the results of the interaction among several virtual software environments,
each of them is called virtual workshop. Furthermore, when a complex activity has to
be performed by a team of people of different cultures, each member of the team
performing different tasks, the SSW methodology prescribes the development of a
network of environments, each being devoted to the performance of specific tasks by
well identified members of the team, while the overall environment has to be custom-
ized to the culture and skills of the people who will use it.

Overall, according to the SSW methodology an interactive system to support the
work practice in a given application domain is developed as a set of interconnected
virtual workshop. There are two types of virtual workshop: application workshop is a
software environment used by a community of end users to perform their daily tasks
in a certain domain, it is properly designed for the specific needs of that community
of end users; system workshop is a software environment used by a community of
experts in the design team to generate and update other workshops. An interactive
system is always organized as a network of system and application workshops, always
presenting three main levels. Meta-design level, in which software engineers use a
system workshop to provide the software tools necessary to the development of the
overall interactive system, and to participate in the design, maintenance, and valida-
tion of application and system workshops. Software engineers produce the initial
programs, which generate the virtual workshop to be used and refined at the same or
at lower levels, and participate in the maintenance of virtual workshops by modifying
them to satisfy specific requests coming from lower levels. Design level, in which
HCI experts, and domain experts cooperate in design, maintenance, and validation of
application workshops through their own system workshops. Use level, in which end
users (not participating to the development process) belonging to a certain community
participate in task achievement using the application workshop devoted to their com-
munity. The network is thus organized, as in OSSs, so that it reflects the working
organization of users and developers. Both meta-design and design levels include all
the system workshops that support the design team in performing the activity of par-
ticipatory design.

According to the ecology of participants (Figure 2) and to the SSW methodology,
we identified a mapping between the network levels involved in the virtual workshops
network devoted to participants in OSS with the three main areas in the framework
characterizing the ecology of participants in the development process in OSS. At
meta-design level there are software environments supporting user in the Software

 The Ecology of Participants in Co-evolving Socio-technical Environments 285

Design Space (see Figure 2); Project Leaders, Core Members, Active Developers and
Peripheral Developers will find here the virtual workshop devoted to them. At design
level two system workshops are identified to support Bug Fixers and Bug Reporters
activities. At use level Readers and Passive Users participating in the Software Con-
suming Space will have application workshops to accomplish to their tasks. In each of
the three levels, communication paths among virtual workshop belonging to are pro-
vided to support the co-operation in the development process.

4 Role Migration in the Ecology of Participants

The ecology of participants (Figure 1) depicts the varied roles that participants as-
sume in using and developing software systems. The software systems are developed
and evolved through the intensive interactions among all the participants, and the
interaction between users and software systems. At the same time, participants also
evolve through the same process and assume bigger roles in shaping the functionality
of the software systems. At this aim, they are supported by the Software Shaping
Workshop methodology that foresees a virtual workshop for each role in the ecology
of participants in the OSS development process. The network of virtual workshops
allows them to communicate and collaborate to the system design, implementation,
use and evolution by working with a workshop customized to them and using their
own languages and notations, so that they are not disoriented and may overcome the
gaps existing among them. Figure 2 describes the co-evolution that we have observed
in OSS systems. Many participants started as users, and during their interactive use of
the software system, some of the participants become interested in reading and mak-
ing bug reports of the system, migrating into the roles of readers and bug reporters.
Some got more involved and continued their migration path into bug fixers and pe-
ripheral developers as they gain more knowledge of the system. Some even became
active developers and core members by contributing more development the system.
As the members migrated into bigger roles, their contributions made the system
evolve, and the evolution of the system in turn relied on the active participation and
contributions of different levels of participants.

5 Conclusions

In this paper we discussed a conceptual framework to characterize the rich and varied
ecology of participants, at various levels, in open, evolvable and living socio-
technical environments. Nowadays, the sweeping kinds of end users are increasingly
involved in the design and development of the tools they use, thus they need to be
supported through techniques that are suitable for them. In particular we explored the
ecology of participants in Open-Source Software, by analyzing the various roles of
involved end users in the development process belonging to three different spaces
(software consuming, EUD and Software design space) and matching them with the
three different levels (use, design and meta-design level) required by the Software
Shaping Workshop design methodology. Finally we provided some insights about the
evolution and the consequent migration of user roles along the migration path.

286 G. Fischer, A. Piccinno, and Y. Ye

References

1. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User Devel-
opment. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, vol. 9, pp.
427–457. Springer, Dordrecht (2006)

2. Leadbeater, C., Miller, P.: Pro-Am Revolution. How enthusiasts are changing our econ-
omy and society. Demos, London (2004)

3. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything.
Portofolio. Penguin Group, New York (2006)

4. Nardi, B.A.: A Small Matter of Programming. The MIT Press, Cambridge (1993)
5. Wenger, E.: Communities of Practice — Learning, Meaning, and Identity. Cambridge

University Press, Cambridge (1998)
6. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited Research Overview: End User Program-

ming. Human Factors in Computing Systems, CHI 2006 (Montreal), pp. 75–80 (2006)
7. Burton, R.R., Brown, J.S., Fischer, G.: Analysis of Skiing as a Success Model of Instruc-

tion: Manipulating the Learning Environment to Enhance Skill Acquisition. In: Rogoff, B.,
Lave, J. (eds.) Everyday Cognition: Its Development in Social Context, pp. 139–150. Har-
vard University Press, Cambridge (1984)

8. Sutcliffe, A., Mehandjiev, N.: Introduction. Communications of the ACM 47, 31–32
(2004)

9. Beyond ’Couch Potatoes’: From Consumers to Designers and Active Contributors.
FirstMonday (Peer-Reviewed Journal on the Internet),
http://firstmonday.org/issues/issue7_12/fischer/

10. Fischer, G.: Domain-Oriented Design Environments. Automated Software Engineering 1,
177–203 (1994)

11. Sutcliffe, A.G.: Requirements Engineering for socio-technical systems. In: Proceedings
Fifth IEEE International Symposium on Requirements Engineering, pp. 27–31. IEEE
Computer Society Press, Los Alamitos (2001)

12. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution Patterns of
Open-Source Software Systems and Communities. In: International Workshop on Princi-
ples of Software Evolution (IWPSE 2002), Orlando, FL, pp. 76–85 (2002)

13. O’Reilly, T.: Lessons from Open-Source Software Development. Communications of the
ACM 42, 33–37 (1999)

14. Aoki, A., Hayashi, K., Kishida, K., Nakakoji, K., Nishinaka, Y., Reeves, B., Takashima,
A., Yamamoto, Y.: A Case Study of the Evolution of Jun: An Object-Oriented Open-
Source 3D Multimedia Library. In: 23rd International Conference on Software Engineer-
ing (ICSE 2001), pp. 524–533. IEEE Press, Toronto (2001)

15. Raymond, E.S., Young, B.: The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly, Sebastopol (2001)

16. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: End-User Development: the Software
Shaping Workshop Approach. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User
Development, vol. 9, pp. 183–205. Springer, Dordrecht (2006)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 287–292, 2008.
© IFIP International Federation for Information Processing 2008

User Interface Migration between Mobile Devices and
Digital TV

Fabio Paternò, Carmen Santoro, and Antonio Scorcia

ISTI-CNR, Via G. Moruzzi, 1
56124 Pisa, Italy

{Fabio.Paterno,Carmen.Santoro,Antonio.Scorcia}@isti.cnr.it

Abstract. In this paper we present a demonstration of the Migrantes environ-
ment for supporting user interface migration through different devices, includ-
ing mobile ones and digital TV. The goal of the system is to furnish user
interfaces that are able to migrate across different devices, in such a way as to
support task continuity for the mobile user. This is obtained through a number
of transformations that exploit logical descriptions of the user interfaces to be
handled. The migration environment supports the automatic discovery of client
devices and its architecture is based on the composition of a number of soft-
ware services required to perform a migration request.

Keywords: User Interface Migration, Adaptation to the Interaction Platform,
Ubiquitous Environments.

1 Introduction

One important aspect of pervasive environments is the possibility for users to freely
move about and continue interacting with the services available through a variety of
interactive devices (i.e. cell phones, PDAs, desktop computers, digital television sets,
intelligent watches, and so on). In this area, one important goal is to support continu-
ous task performance, which implies that applications be able to follow users and
adapt to the changing context of users and the environment itself. In practice, it is
sufficient that only the part of an application that is interacting with the user migrates
to different devices.

In recent years, research on issues related to user interfaces in ubiquitous environ-
ments has started (see for example [1] [2] [3]). For instance, a discussion of some
high-level requirements for software architectures in multi-device environments is
proposed in [1], although it is done without presenting a software architecture and
implementation solution for these issues. In our work, we propose a specific architec-
tural solution, based on a migration/proxy server, able to support migration of user
interfaces associated with applications hosted by different content servers.

More in detail, in this demo, we show a solution for supporting migration of appli-
cation interfaces among different types of devices. Such solution is able to detect any
user interaction performed at the client level. Then, we can get the state resulting from
the different user interactions and associate it to a new user interface version that is

288 F. Paternò, C. Santoro, and A. Scorcia

activated in the migration target device. In particular, the solution proposed has been
encapsulated in a service-oriented architecture and supports user interfaces with dif-
ferent platforms (fixed and mobile) and modalities (graphical, vocal, and their combi-
nation). The new solution also includes a discovery module, which is able to detect
the devices that are present in the environment and collect information on their fea-
tures. Users can therefore conduct their regular access to the Web application and
then ask for a migration to any device that has already been discovered by the migra-
tion server. The discovery module also monitors the state of the discovered devices,
automatically collecting their state-change information in order to understand if there
is any need for a server-initiated migration. Moreover, we show how the approach is
able to support migration across devices that support various implementation lan-
guages. This has been made possible thanks to the use of a logical language for user
interface descriptions at different abstraction levels [4], which is independent of the
implementation languages involved, and a number of transformations that incorporate
design rules and take into account the specific aspects of the target platforms.

In the paper we first describe a scenario supported by our demo, next we briefly
describe the underlying architecture, and lastly we discuss an example session show-
ing the corresponding user interfaces provided to the users.

2 A Scenario Supported by the Demo

The demo regards a user returning home from work, who starts to prepare the shop-
ping list through a mobile device (while s/he is on the bus or train) and then when s/he
gets at home, s/he may look at what is actually available and realise that some items
are still missing. Then, s/he completes the list by interacting with the digital TV with
large screen while sitting comfortably on the couch.

Thus, using the PDA, the users can access the page dedicated to the products and
specify the category they are interested in (for example “meat”). Depending on the
selected category, the application allows a further refinement of the selection. In our
scenario, the users are allowed to select which kind of meat they want to buy by
means of choosing among beef, poultry and pork. Then, a number of options are visu-
alised together with the associated amounts, and the user can start to select what s/he
wants to buy. When the user enters home, the smart environment suggests the user the
possibility to migrate the user interface to other devices which have been recognised
as available in the new environment, since the agent-based architecture has recog-
nised a situation where more comfortable interactions might take place (e.g.: the user
could interact with the desktop PC which has a larger screen, or s/he can interact with
the TV while comfortably sitting on the couch). Then, if the user decides to migrate
the user interface to the digital TV, s/he can continue editing the shopping list through
a larger screen without having to save their selections from the PDA and login again
the application from the new device. After the interface migration, the user can find
the items that were specified before, through the PDA (e.g. the request for three beef
steaks, which was specified using the handheld device) and edit them or add new ones
until lastly they send the request. The text can be entered by selecting a specific but-
ton on the TV controller, which activates a virtual keyboard on the screen.

 User Interface Migration between Mobile Devices and Digital TV 289

3 The Migration between Mobile Device and Digital TV

The main characteristics of migration are: device change, adaptation, and continuity.
The basic idea is that people would like to freely move and still be able to continue to
perform their tasks and thus the interactive part of an applications should be able to
follow them and adapting to the changing context of use.

Our migration environment is based on a service-oriented architecture involving
multiple clients and servers: the architecture is aimed at providing interoperability
between the different services, which can be also combined for delivering composite
services, as it happens in the migration support. We assume that the desktop version
of the considered applications already exists in the application servers. In addition, we
have a migration platform, which is composed of a proxy service and a number of
specific services and can be hosted by either the same or different systems.

The main services that have been identified to compose the migration platform:

• The Discovery Manager, which includes the functionalities for discovering
the available devices and update the device list accordingly;

• The Migration Manager/Proxy is the core of the system: it handles the com-
munication with the other modules, also including proxy functionalities.

• The Reverse Engineering, is in charge of reversing the desktop implementa-
tion into a logical user interface description;

• The Semantic Redesign module, which transforms the logical description of
the user interface designed for the source platform into a logical description
of the user interface for the target migration platform;

• The State Mapper, which updates the final user interface with the values of
the current state, which have been saved at the time the request of migration
occurred;

• The UIGenerator, which reifies the logical concrete description into an im-
plementation language for the target platform.

The process starts with the source and target devices notifying their presence to the
Discovery Manager, which is in charge of discovering the available devices and up-
dating the list of devices accordingly, also showing their characteristics. Indeed, in
order to allow for a good choice of the target device, information about the devices
that are automatically discovered in the environment is displayed and saved. Such
information mainly concerns device identification and interaction capabilities and, on
the one hand, it enables users to choose a target migration device with more accurate
and coherent information on the available targets and, on the other hand, it enables the
system to suggest or automatically trigger migrations when the conditions for one
arise. Thus, both the system and the user have the possibility to trigger the migration
process, depending on the surrounding context conditions.

Users have two different ways of issuing migration requests. The first one is to
graphically select the desired target device in their migration client. Users only have
the possibility of choosing those devices that they are allowed to use and are currently
available for migration. The second possibility for issuing migration requests occurs
when the user is interacting with the system through a mobile device equipped with
an RFID reader. In this case, users could move their device near a tagged migration

290 F. Paternò, C. Santoro, and A. Scorcia

target and keep it close from it for a number of seconds in order to trigger a migration
to that device. In this case, in addition to a spatial threshold used to indicate when the
user is sufficiently close to trigger a migration, a time threshold has been defined in
order to avoid accidental migration, for example when the user is just passing by a
tagged device. This second choice offers users a chance to naturally interact with the
system, requesting a migration just by moving their personal device close to the de-
sired migration target, in an easy manner. Migration can also be initiated by the sys-
tem, skipping explicit user intervention in critical situations when the user session
could accidentally be interrupted by external factors. Alternatively, the server can
provide users with migration suggestions to improve the overall user experience.

The migration clients are supposed to access the various applications through the
proxy available within the Migration Manager. Indeed this module works as a proxy
since it is in charge of intercepting the clients’ request of accessing a page, retrieving
such a page from Internet and saving it locally together with the referred entities (im-
ages, CSS files, etc.). Afterwards, the Migration Manager receives from the source
device the request for migration (which specifies the source device, the target device,
and the page that has to be migrated), and it triggers the sequence of actions needed
for fulfilling such a request. It is worth noting that the application that triggers the
migration – the so-called ‘Migration Client’- can be contained in an application which
is separated from the web browser. For instance, in the current implementation, the
migration request is activated through a separate C# program which allows the user to
select the devices available for migration (see Figure 1, Left).

Fig. 1. Left, The Migration Client Interface, Right, the Application User Interface

Once the Proxy receives the Web page from the concerned Application Server, the
Proxy modifies it by including JavaScript functions that are aimed at collecting in-
formation about the state of the migrating page, and afterwards it sends to the Web
browser of the source device (PDA). The JavaScript functions that are automatically

 User Interface Migration between Mobile Devices and Digital TV 291

inserted by the proxy server are in charge of collecting the information that describes
the state of the migrating page by accessing its DOM. The information is collected
into a string formatted following a XML-based syntax and submitted to the server
together with the IP of the target device. This information is sent to the server through
an AJAX script. The reason for this is that only the application running on the client
device can access the DOM and the AJAX callback can transmit the data without
requiring any additional explicit action from the user.

Fig. 2. The Application User Interface Migrated into the Digital TV

The Migration Server, after receiving the request of migration by the source
device, interrogates the Migration Client of the target device asking about its avail-
ability/willingness for accepting a migrating UI: if the migration is accepted, the envi-
ronment detects the state of the application modified by the user input (elements
selected, data entered, ..) and identifies the last element accessed in the source device.
Then, the Migration Manager gets information about the source device and, depend-
ing on such information it builds the corresponding logical descriptions, at a different
abstraction level, by invoking the Reverse Engineering service of our system. At this
point, the Migration Manager asks the Discovery Manager information about the
target device in order to understand for which platform the redesign process has to be
carried out. Indeed, the result of the reverse engineering process, together with infor-
mation about source and target platforms is used as input for the Semantic Redesign
service, in order to perform a redesign of the user interface for the target platform.
This part of the migration environment transforms the logical description of the desk-
top version into the logical description for the new platform. This solution allows the

292 F. Paternò, C. Santoro, and A. Scorcia

environment to exploit semantic information contained in the logical description and
obtain more meaningful results than transformations based only on the analysis of the
specific implementation language used for the final UI. Once the application presenta-
tion to activate on the target device is identified, the Migration Manager asks the State
Mapper to adapt the state of the concrete user interface with the values that have been
saved previously. Then, once the concrete user interface adapted with the new values
has been obtained, the reification of such a logical description into the final user inter-
face for the target platform is performed by the UIGenerator module and lastly, the
resulting page is sent to the browser of the target device in order to be loaded and
rendered. Figure 2 shows the UI migrated into the Digital TV. It is possible to see that
the values entered in the source device (see Figure 1) have been preserved in the user
interface generated for the target device, and the users can continue from the point
they left off. As for the implementation for the digital TV, it involves the generation
of a file in a Java version for digital TVs representing a Xlet, which is downloaded on
the Set-Top-Box. In our demo we use a Set Top Box Telesystem TS7.2 DT, which
supports Multimedia Home Platform (MHP 1.0.2), an open middleware system stan-
dard for interactive digital television, enabling the execution of interactive,
Java-based applications on a TV-set. It is worth pointing out that in this example we
considered migration from PDA and the Digital TV, but the approach can be extended
for any platform, providing that exists a Web desktop application version and the
opportune software modules (migration client, UI generator,..) are provided taking
into account the characteristics of the considered devices (available interaction re-
sources, implementation languages supported, …).

4 Conclusions

In this paper we describe a system for enabling user interface migration through dif-
ferent devices: UI logical descriptions (with associated transformations) have been
exploited for supporting the migration mechanisms, together with various technolo-
gies (e.g. AJAX scripts) for saving the current state of the user interface. Ongoing
work is dedicated to further enrich the data associated with the current state of the
user interface in order to support continuity in a wider set of user’s interactions.

References

1. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a Soft-
ware Architecture Reference Model for Distributed, Migratable and Plastic User Interfaces.
In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS,
vol. 3295, pp. 291–302. Springer, Heidelberg (2004)

2. Bandelloni, R., Mori, G., Paternò, F.: Dynamic Generation of Migratory Interfaces. In: Pro-
ceedings Mobile HCI 2005, Salzburg, September 2005, pp. 83–90. ACM Press, New York
(2005)

3. Luyten, K., Coninx, K.: Distributed User Interface Elements to support Smart Interaction
Spaces. In: IEEE Symposium on multimedia, Irvine, USA, December 12-14 (2005)

4. Mori, G., Paternò, F., Santoro, C.: Design and Development of Multi-device User Interfaces
through Multiple Logical Descriptions. In: IEEE Transactions on Software Engineering,
August, vol. 30(8), pp. 507–520. IEEE Press, Los Alamitos (2004)

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 293–298, 2008.
© IFIP International Federation for Information Processing 2008

Demonstration of Software Components for End-User
Development

Mario Gleichmann1, Thomas Hasart2, Ilvio Bruder3, Andreas Heuer4,
and Peter Forbrig5

1 IT Science Center Rügen gGmbH, Germany
gleichmann@it-science-center.de
2 IT Science Center Rügen gGmbH, Germany
hasart@it-science-center.de

3 IT Science Center Rügen gGmbH, Germany
bruder@it-science-center.de

4 IT Science Center Rügen gGmbH, Germany
heuer@it-science-center.de

5 University of Rostock, Germany
peter.forbrig@uni-rostock.de

Abstract. This paper demonstrates how “End-User-Development” can be im-
plemented with the Qt4 designer of Trolltech. It provides an example showing
how users modify user interfaces by adding functionality that originally was not
available.

Keywords: end user development, design, user interface.

1 Introduction

This paper demonstrates the design process of user defined user interfaces for access-
ing OLAP data (Pendse, 1998) at runtime. As an example, a simple dashboard for a
controller is designed.

2 Project Monicca

Our Monicca project on “Model-Driven Account Management in Data Warehouse
Environments” aims at adapting OLAP applications of the user interface to the func-
tional layer. Thereby, a tool is developed for Key Accounts [6]. With this tool one can
offer clients different data from the Data Warehouse or other external resources. It
gives key account managers a special interface to the data of key customers. Addi-
tionally, this allows applications to offer broad, suitable and adjusted analysis func-
tionalities. The general problem of adaptation of OLAP applications will be solved by
using techniques based on metadata. To generate the user views, a model language
will be developed which can describe necessary OLAP operations for the views, rela-
tions, the definition of the outputs and the following interactions. This model-based

294 M. Gleichmann et al.

approach is the basis for the “end-user development” that aims at adapting and ex-
tending applications.

3 Demonstration

Figure 1 shows the embedded Qt-Designer [15] with an empty new window (Ui-
Container). On the right hand side the current available UI components are listed.
These components can be dragged and dropped on the empty window. From the dock
window “Widget Box/BI-Suite Widgets”, which holds the custom designer plug-ins,
“ESumGrid” was selected and dragged on the new widget (Figure 2).

Now, a data cube must be specified representing the data of this table. Therefore, a
cube from the list in the “Cube Selection” tab window is dropped on the table
(Figure 3).

Following the same procedure, the node for the horizontal and the vertical axis
(Figure 4) can be assigned.

Measures and plan scenarios can be designed in the same way like the axis defini-
tion by drag and drop of the needed items.

To demonstrate the layout mechanism, some more items must be created - in this
example two speedometers and one button (Figure 6). As first step the two speedome-
ters are laid out horizontally (Figure 7). The button is being placed at the lower left
corner. Therefore, a vertical spacer is created and a layout with the button is horizon-
tally performed. Afterwards all created elements are laid out vertically. Figure 8
shows the final layout of the sample dashboard.

Toolbox Cube Selection

Widget

Properties

Fig. 1. Designer

 Demonstration of Software Components for End-User Development 295

Fig. 2. Window with a
slice and dice table

Fig. 3. Drop cube on
table

Fig. 4. Definition of x- and y-axis

Fig. 5. Finished axis definition

296 M. Gleichmann et al.

Figure 9 shows the property editor of the Qt-Designer. Most of the properties are
provided by the QWidget class. These properties are needed to define the look of the
selected component. They allow to change the font or the background image. In the
example, a new property “onClick” for the BIActionButton is implemented. Within
this property, a script can be defined which is executed if the button is clicked by the
user. Currently, functions for switching to another container and for executing exter-
nal commands are implemented.

Fig. 6. Layout mechanism

Fig. 7. Layout horizontally

Fig. 8. Final layout

 Demonstration of Software Components for End-User Development 297

Fig. 9. Component properties

4 Summary and Future Work

With the developed plug-ins, we allow users to design interactive applications accord-
ing to their own needs. A first big step in the direction of “End-User-Development”
has been realized. Our approach provides opportunities to represent OLAP cubes as
spreadsheet metaphors for end users. Limitation and problems in forms creation are
no longer only solvable by software developers. Initial experiments with key account
managers (without any programming knowledge) showed very positive results.

As a challenge still remains defining dependencies between visualization compo-
nents. This would allow users to specify the consequences of interacting with one
object by state changes in other objects. A selection box could restrict the data area of
all elements or a chart could show the currently selected row in a table.

Indeed, experiments demonstrated that user would like to have these possibilities in
existing applications.

It is also planned to consider visualization proposals for spreadsheets discussed in
[1]. Constrains analogous to [2] would be more meaningful expansions to a wider
security of the programs.

In the current stage of development, very limited opportunities for process control
are available. At the moment there are no conditional jumps to other analysis elements.
It is also not possible to unlock actions depending on properties of the elements.

For enterprise applications it is not enough to have good individual (local) user in-
terface elements. Complex enterprise models are needed to get the software usable. It
must e.g. be possible to specify various user roles in these models.

References

1. Ballinger, D., Bidle, R., Noble, K.: Spreadsheet Visualisation to Improve End-user Under-
standing. In: Australiean Symposium on Information Visualisation, Adelaide, Australia (2003)

2. Burnett, M., Cook, C., Pendes, O., Rothermel, G., Summet, J., Wallace, C.: End-User Soft-
ware Engineering with Assertions in the Spreadsheet Paradigm. In: Proc. International
Conference on Software Engineering, pp. 93–103. Portland, Oregon, USA (2003)

298 M. Gleichmann et al.

3. Erwig, M., Abraham, R., Cooperstein, I., Kollmansberger, S.: Automatic Generation and
Maintenance of Correct Spreadsheets. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005.
LNCS, vol. 4309, pp. 136–145. Springer, Heidelberg (2006)

4. Hodgins, J., Bruckman, A., Hemp, P., Ondrejka, C., Vinge, V.: The Potential of End-User
Programmable Worlds: Present and Future. In: Panel SIGGRAPH 2007: ACM SIG-
GRAPH 2007 panels (2007)

5. Ruthruff, J.R., Burnett, M.: Six challenges in supporting end-user debugging. ACM SIG-
SOFT Software Engineering Notes 30(4), 1–5 (2005)

6. McDonald, M., Rogers, B.: Key Account Management – Learning from supplier and cus-
tomer perspectives. Butterworth Heinemann, Oxford (1998)

7. Meyer, R.M., Masterson, T.: Towards a better visual programming language: critiquing
prograph’s control structures. The Journal of Computing in Small Colleges 15(5), 181–193
(2000)

8. Millman, A.F., Wilson, K.J.: From Key Account Selling to Key Account Management.
Journal of Marketing Practice: Applied Marketing Science 1(1), 9–21 (1995)

9. Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V.: Component-Based
Technologoies for End-User Development. Communications of the ACM 47(9), 59–62
(2004)

10. Myers, B., Burnett, M.M., Wiedenbeck, S., Ko, A.J.: End User Software Engineering. In:
CHI 2007 Special Interest Group Meeting, San Jose, California, USA. CHI (2007)

11. Pendse, N.: What is OLAP?, The OLAP Report (1998) (visited: March 13 (2008),
http://www.olapreport.com/fasmi.htm

12. Scaffidi, C., Shaw, M., Myers, B.: An Approach for Categorizing End User Programmers
to Guide Software Engineering Research. In: First Workshop on EndUser Software Engi-
neering (WEUSE I), Saint Louis, Missouri, May 21 (2005)

13. Scaffidi, C.: A Data Model to Support End User Software Engineering. In: 29th Interna-
tional Conference on Software Engineering, ICSE 2007 Companion (2007)

14. Sidow, H.D.: Key Account Management. Landsberg am Lech: mi-Fachverlag (2007)
15. Trolltech (2008) (visited: March 11, 2008), http://trolltech.com/

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 299–304, 2008.
© IFIP International Federation for Information Processing 2008

Transactions in Task Models

Daniel Reichart and Peter Forbrig

University of Rostock, Department of Computer Science
{daniel.reichart,peter.forbrig}@uni-rostock.de

Abstract. In this paper we propose a method to model the behaviour of task
models in error situations. For these purposes we follow the idea of transactions
in database systems. By encapsulating tasks in transactions the atomicity of
complex tasks can be asserted. Corresponding tool support is presented which
includes modelling and simulating task models. The tools themselves were de-
veloped in a model-based way.

Keywords: Transaction, Task Model, Tool Support.

1 Motivation

The diversity of mobile devices and platforms requires new methods to master the
complexity of user-interface development. Abstract models can help to solve many
issues so that model-based user interface development becomes more and more popu-
lar. Task models are widely used to specify interactive software. Many methods and
tools using task models to develop user interfaces. But still there are many problems
that can occur, when generating user interfaces from these models. Task models just
describe interactions between user and system in an idealistic way. Exceptions to this
default behaviour is hard to express or even can not be expressed. But in real world
applications errors occur and developers have to specify fallback behaviour. What
happens, if a system task fails, because a required resource is not available? Which
tasks have to be undone to get back to a consistent state? The cascading selective
undo mechanism presented in [1] can help to address the second question but has
another motivation. Instead of undoing selective, already successfully completed tasks
and their impact on application state we propose an approach to handle error recovery
strategies for task models using the concept of transactions.

2 Transactions

Transactions were originally developed to be used in database management systems
to avoid inconsistencies of data. Such problems can arise when two processes write
the same data concurrently or in case of hardware or network failures. The idea of this
paper is to encapsulate more than one task into one transaction. The three new opera-
tions begin, commit and rollback define the boundaries of the transaction. Transac-
tions in databases are required to ensure the following constraints:

300 D. Reichart and P. Forbrig

• Atomicity: Atomity guarantees, that either all of the operations are performed or
none of them.

• Consistency: The database remains in a consistent state before the start and after
the end of the transaction.

• Isolation: Isolation ensures, that each transaction appears to be isolated from all
other transactions. This means, an operation outside a transaction can not see in-
termediate data of the transaction causing unwanted side effects.

• Durability: Durability guarantees, that once a transaction was performed successful
it will persist.

These so called ACID criteria are too strict to be used in workflow systems or task
models. To loosen some of the restrictions there are advanced transaction models to
specify nested transactions [1], long-living transactions [3] or multi-level transactions
[4]. We make use of some of these ideas and concepts in modeling transactions in
task models.

3 Task Models

The task models we are dealing with are derived from the CTT notation [5].

ModelElement

id : String
name : String
comment : String

(f rom m6 c)

TaskCategory

abstraction
user
interact ion
application

<<enumeration>>

TemporalOperator

notspecified
choice
orderindependence
concurrent
disabling
suspendresume
enabling

<<enumeration>>

Model
(f rom m6c)

TemporalOperation

operator : TemporalOperator

Iteration

min : Integer
max : Integer

InstanceIteration

TaskModel
TaskComposite

1..n

0..1

+children 1..n

0..1

1

0..1

+child
1

0..1

1

0..1

+child
1

0..1

Task

category : TaskCategory

1

0..1

+root 1

+model 0..1 0..1

0..1

+refinement

0..1

0..1

Fig. 1. Task-meta-model

A task model is basically a tree of tasks and subtasks. Iterations and optional tasks
can be specified as well as different temporal relations between subtasks.

Figure 1 shows the important parts of our task-meta-model. This meta model is an
integral part of our tool development process [7, 8]. Using Eclipse [9] and some
frameworks like EMF [10], GEF [11] and GMF [12] we developed a set of model-
based user interface design tools.

 Transactions in Task Models 301

Fig. 2. Task model “write mail”

Figure 2 shows an example task model created with one of our tools. It differs a lit-
tle bit from the CTT notation. Temporal relations and iterations are nodes in our mod-
els instead of attributes respectively associations. One advantage of this notation, that
one can immediately see the order of applied temporal operations without knowing
operator priorities like in CTTE.

3.1 Lifecycle of Tasks

Each task passes different states during its lifetime. A state chart can be used to spec-
ify the states and possible transitions between them, like in [13]. We developed our
own state chart that fits our needs.

Disabled Enabled

Skipped

Suspended

Running

Aborted

Completed

enable

skip | abort

suspend

abort

end

resume abortdisable

skip | abort

start

Fig. 3. Lifecycle of a task

This state chart of Fig. 3 is applicable for basic (leaf) tasks as well as complex
tasks. At the beginning, a task is in the state Disabled. In the default case, the event
enable causes a state change to Enabled, start changes the state to Running and end
results in the final state Completed. Variations of this behaviour arise by using differ-
ent temporal operators. For example, using a Choice operator between two tasks A
and B, skip is send to task A when the user chooses to start task B, effecting in state
Skipped. The operator OrderIndependence takes care that while one task is running
the other task will be temporarely disabled by sending disable. The events suspend

302 D. Reichart and P. Forbrig

and resume occur using the temporal operator Suspend/Resume and abort is sent by
the operator Disabling to cancel task A when task B starts.

To simulate a complete task model, for each task an instance is created first. This
instance contains amongst other things the current state of execution, following the
above state chart. The temporal operators act like agents between these instances and
take care to reproduce the specified behaviour. For example, the temporal operator
Enabling between two tasks A and B achieves this by observing the state of A and
send the event enable to B when A changes his state to Completed.

3.2 Transactions in Task Models

The reason to introduce the concept of transactions into task models was to model the
behaviour in case of an error. First, we had to reflect error situations in our runtime
models. We inserted a new state Failed into the state chart and a transition from Run-
ning to Failed, reflecting an error situation. When a task enters the state Failed, inter-
esting questions arise: What happens with the state of following tasks and the parent
task? How can the task model get back to a consistent state?

We take a look at some examples first: Let’s assume, in figure 2 the task send mail
cannot be performed due to connection problems. The reasonable behaviour here is to
give the user the opportunity to retry the task send mail when the network connection
is working again.

In another task model we describe a complex calculation. If on of it steps cannot be
performed, e.g. if some data is missing, the whole calculation fails due to missing
intermediate data.

A third task model contains the task of booking a journey. This includes amongst
other things the booking of a flight, a hotel and a rental car and the payment process.
If one of these steps goes wrong (no hotel available, not enough money, …) any al-
ready performed task has to be undone. This behaviour is similar to the rollback op-
eration of a transaction.

There may be other strategies to handle errors in task models but we will focus upon
the three strategies described above: try again, abort and roll back. We extended our
task models by adding an attribute for each task to specify, which strategy to apply.

Disabled Enabled

Skipped

Suspended

Running

Aborted

Completed

enable

skip | abort

suspend

abort

end

Failed Rolledback

fail

resume abort

rollback

disable

skip | abort

start

rollback

rollback

Fig. 4. Extended lifecycle with transaction concepts

 Transactions in Task Models 303

Figure 4 shows the extended lifecycle of a task, including the two new states,
Failed and Rolledback. We also defined for each combination of temporal operator
and strategy, how to behave, when a tasks state switches into the state Failed.

The strategy “Abort” generally causes a failure of the task when a subtask fails.
Using this strategy all over the task model, each failure in one of the subtasks causes
the whole model to fail.

“Try again” resets the task and all of its subtasks when a subtask fails. Using this
strategy we can stop the error propagation from a leaf task to the root task resulting
from the application of the strategy “Abort”.

The strategy “Roll back” revokes already performed tasks by executing the oppo-
site tasks in reversed order, for example the cancelation of orders or accounting trans-
actions. Using this strategy we create an effect similar to transactions in database
systems: Either the whole tasks is performed or nothing. Of course, not all criteria of
database transactions are fulfilled, but this is not required.

3.3 Tool Support for Transactions in Task Models

To test the above ideas we implemented them in a few of our tools. First of all, we en-
hanced the meta model in figure 1 and added an attribute to specify for each task, which
strategy to apply and how many times the user can retry a task. For example, the task
model designer can specify, that the user has 3 attempts to perform “enter PIN”, until
this task fails finally. These meta-model-changes are reflected directly in our editors.

Further modifications are related to our task model simulation engine: The intro-
duction of the new task states Failed and Rolledback and the implementation of error
strategies. The user interface to control the task model simulation has changed too:
Users are able to send the message Crash to a task to simulate an error as seen in
figure 5.

Fig. 5. Simulation of a task model

304 D. Reichart and P. Forbrig

Additionally, the order of already performed tasks can be seen now on the right
side to keep an eye on how the rollback mechanism works. In this example, the tasks
enter mail address, write text, write subject and drop file from explorer (hidden by the
popup menu) are already completed.

4 Summary and Future Work

The paper discussed an approach to address error situation in task models, using ideas
from the concept of transactions. In the process of developing user interfaces we need
to use this method to specify non-standard cases in task execution. This approach
works on a very basal level. It does not consider consistency on the object level. For
example, if a task modifies the state of an object and is rolled back later, the object’s
state will not be restored.

In the future we want to readjust our other tools, like the dialog graph editor [8] to
the task model transaction approach. We have to develop new concepts for dialog
graphs in order to react reasonable to error situations in task models.

References

1. Cass, A., Fernandes, C.: Using Task Models for Cascading Selective Undo. In: Coninx, K.,
Luyten, K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 186–201.
Springer, Heidelberg (2007)

2. Moss, J.: Nested Transactions and Reliable Distributed Computing. In: Proc. Of the 2nd
Symposium on Reliability in Distributed Software and Database Systems (1982)

3. Garcia-Molina, H., Salem, K.: Sagas. In: Proc of ACM SIGMOD Conference on Manage-
ment of Data (1987)

4. Weikum, G., Schek, H.: Concepts and Applications of Multilevel Transactions and Open-
nested Transactions. In: Database Transaction Models for Advanced Applications (1992)

5. CTTE: The ConcurTaskTree Environment,
http://giove.cnuce.cnr.it/ctte.html

6. Sinnig, D., Wurdel, M., Forbrig, P., Chalin, P., Khendek, F.: Practical Extensions for Task
Models. In: Winckler, M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS,
vol. 4849, pp. 42–55. Springer, Heidelberg (2007)

7. Brüning, J., Dittmar, A., Forbrig, P., Reichart, D.: Getting SW Engineers on Board: Task
Modelling with Activity Diagrams. In: EIS 2007, Salamanca, Spain (2007)

8. Forbrig, P., Reichart, D.: Ein Werkzeug zur Spezifikation von Dialoggraphen. Mensch and
Computer 2007, Weimar, Germany (2007)

9. Eclipse (visited: June 8, 2008), http://www.eclipse.org
10. Eclipse Modeling Framework (visited: June 08, 2008),

http://www.eclipse.org/emf
11. Graphical Editing Framework (visited: June 08, 2008),

http://www.eclipse.org/gef
12. Graphical Modeling Framework (visited: June 08, 2008),

http://www.eclipse.org/gmf
13. Bomsdorf, B.: The WebTaskModel Approach to Web Process Modelling. In: Winckler,

M., Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 240–253.
Springer, Heidelberg (2007)

Author Index

Albayrak, Sahin 134

Balbo, Sandrine 41, 237
Beun, Robbert-Jan 72
Bezold, Matthias 205
Blumendorf, Marco 134
Bruder, Ilvio 293
Buchholz, Gregor 29

Caffiau, Sybille 14
Calvary, Gaëlle 271
Collazos, Cesar A. 142
Coninx, Karin 126, 150

De Boeck, Joan 126
Demumieux, Rachel 271
Dittmar, Anke 213
Dix, Alan 1
Doherty, Gavin 229

Feuerstack, Sebastian 134
Fischer, Gerhard 279
Forbrig, Peter 29, 118, 213, 293, 299

Ganneau, Vincent 271
Ghanam, Yaser 263
Giese, Matthias 98
Giraldo, William J. 142
Girard, Patrick 14
Gleichmann, Mario 293
Gonzalez Calleros, Juan Manuel 181
Goschnick, Steve 41, 237
Guittet, Laurent 14

Haesen, Mieke 150
Harrison, Michael D. 166
Hasart, Thomas 293
Heim, Philipp 221
Heuer, Andreas 293

Kane, Bridget 229
Kern, Maximilian 134
Kruppa, Michael 134

Latella, Diego 166
Lohmann, Steffen 221
Loreti, Michele 166
Luyten, Kris 150
Luz, Saturnino 229

Massink, Mieke 166
Maurer, Frank 263
McKnight, Joseph 229
Metzger, Mieczyslaw 246
Mistrzyk, Tomasz 98
Molina, Ana I. 142

Ortega, Manuel 142

Paech, Barbara 197
Paternò, Fabio 255, 287
Pfau, Andreas 98
Piccinno, Antonio 279
Polaków, Grzegorz 246
Propp, Stefan 29

Quade, Michael 134

Ratzka, Andreas 58
Raymaekers, Chris 126
Reichart, Daniel 299
Rückert, Jürgen 197
Runge, Mathias 134

Sanou, Loe 14
Santoro, Carmen 255, 287
Scapin, Dominique L. 14
Scheidl, Stefan 84
Scorcia, Antonio 255, 287
Sinnig, Daniel 118
Sonenberg, Liz 41, 237
Stoitsev, Todor 84
Szwillus, Gerd 98

ter Beek, Maurice H. 166
Trætteberg, Hallvard 110

306 Author Index

Vanacken, Lode 126

van Eijk, Rogier M. 72

Van den Bergh, Jan 150

Vanderdonckt, Jean 181

van Diggelen, Jurriaan 72

von Detten, Michael 98

Wang, Xin 263
Werkhoven, Peter J. 72
Wurdel, Maik 118

Ye, Yunwen 279

Ziegler, Jürgen 221

	Title Page
	Preface
	Organization
	Table of Contents
	Tasks = Data + Action + Context: Automated Task Assistance through Data-Oriented Analysis
	Introduction
	The Best Laid Plans and Reactions
	Environment – Data Driven Interaction
	Context – What to Do and What to Do It to
	Sequence – From Traces to Plans
	Discussion
	References

	Assessment of Object Use for Task Modeling
	Introduction
	Objects in Task Models
	Formalismes Using Objects
	Comparison of Objects in Tools

	Presentation of the Tool K-MADe
	General Presentation
	Objects in K-MADe

	Goal of the Study
	Participants
	Evaluation Method
	General Organization
	User Work
	Observer Work
	User-Logs and Questionnaires

	Data
	Collected Data
	Selection of Data

	Object Definition and Use in Task Modeling Process
	Object Usages
	Conceptual Usages
	K-MADe Object Usages

	Conclusion and Future Works
	References

	Task Model-Based Usability Evaluation for Smart Environments
	Introduction
	Model-Based Software Development
	Model-Based Usability Evaluation
	Model-Based Development of Smart Environments
	Model-Based Usability Evaluation for Smart Environments

	Usability within Task Model-Based Software Engineering
	Disambiguation
	Brief Overview

	Planning a Usability Evaluation
	Conducting a Usability Evaluation (Simulation/Execution)
	Capturing a Task Event Trace
	Simulating and Executing an Evaluation

	Analyzing the Results of a Usability Evaluation
	Conclusion
	References

	From Task to Agent-Oriented Meta-models, and Back Again
	Introduction
	Motivation for Task Models in AO Meta-model Research
	Meta-models

	The ShaMAN Meta-model
	Locales for Computer Games
	Communication Via SpeechFlow
	The Goals, Roles, Responsibilities and Tasks of Agents
	Social Worlds in ShaMAN
	Knowledge Tree and Resources

	A Comparison of ShaMAN with Task Meta-models
	Some Challenges for Task Analysis and Modelling
	Enriching Task Modelling with Some AO Concepts
	References

	Steps in Identifying Interaction Design Patterns for Multimodal Systems
	Introduction
	Traditional Approach of Design Support: Modality Selection Based on Task Properties and Context of Use
	 Modality Selection According to Task Properties
	Interaction Constraints Based on Context of Use
	Shortcomings of This Approach

	Deriving Patterns from Generic Principles of Multimodal Interaction
	Patterns for Modality Combination
	Patterns for Modality Adaptation

	Identification of Multimodal User Interface Patterns Based on Real World Examples – Illustrated by Mobile Systems
	Pattern Discussion Based on Use-Case Aspects
	Summary of Identified Patterns

	Conclusion
	References

	Information Supply Mechanisms in Ubiquitous Computing, Crisis Management and Workflow Modelling
	Introduction
	Workflow Modelling
	Information Supply Mechanisms
	Query
	Subscribe
	Conditional Subscribe
	Comparison

	Analysis Techniques
	Related Work
	Conclusion and Future Research
	References

	A Method for Modeling Interactions on Task Representations in Business Task Management Systems
	Introduction
	Background
	Task Roles
	Modeling Interactions with Task Roles
	The CTM Prototype
	Modeling Interactions on CTM Tasks
	Summary

	Conclusions
	References

	AMBOSS: A Task Modeling Approach for Safety-Critical Systems
	Introduction
	The Task Modeling Environment AMBOSS
	Simulation of Timing and Conditions
	Spatial Behavior
	Analyzing Communication
	Defining and Finding Patterns
	Conclusions
	References

	UI Design without a Task Modeling Language – Using BPMN and Diamodl for Task Modeling and Dialog Design
	Introduction
	Related Work
	Overall Approach
	Using BPMN for Task Modeling
	Step-by-Step Modeling Method
	Conclusion and Further Work
	References

	Task-Based Development Methodology for Collaborative Environments
	Introduction and Background Information
	The Collaborative Task Modeling Language
	Refinement of CTML Specifications

	Development Methodology
	Case Study
	Conclusion and Future Work
	References

	An Event-Condition-Action Approach for Contextual Interaction in Virtual Environments
	Introduction and Related Work
	Runtime Context
	Defining a Context System
	Context Detection and Switching
	Implementation through NiMMiT Diagrams
	Implications at the Dialog Level and Task Level

	Discussion
	Conclusion
	References

	Automated Usability Evaluation during Model-Based Interactive System Development
	Introduction
	Related Work
	Model-Based Automated Usability Evaluation
	System Interaction State Generation
	User Action Generation

	Evaluation Process and Results
	Conclusion and Outlook
	References

	Integrating Groupware Notations with UML
	Introduction
	CIAM: A Methodological Approach for User Interface Development of Collaborative Applications
	The Integration Proposal
	Case Study: A Conference Review System
	Conclusions
	References

	MuiCSer: A Process Framework for Multi-disciplinary User-Centred Software Engineering Processes
	Introduction
	The MuiCSer Process Framework
	Tools and Models
	Artefact Transformation Tools
	Structured Interaction Analysis
	Low-Fidelity Prototyping
	High-Fidelity Prototyping
	Final User Interface

	Case Studies
	NewsWizard
	Mobile Game for Children

	Lessons Learned
	Ongoing and Future Work
	Conclusions
	References

	A Fluid Flow Approach to Usability Analysis of Multi-user Systems
	Introduction
	PEPA: A Process Algebra for Performance Evaluation
	The Thinkteam Groupware
	Modeling File Access Policies
	The Retry Policy
	The Waiting-List Policy

	Analysis of File Access Policies in Thinkteam
	Analysis of the Waiting-List Policy
	Analysis of the Retry Policy
	Comparing the Usability of the Two File Access Policies

	Conclusions and Further Research
	References

	Task-Driven Plasticity: One Step Forward with UbiDraw
	Introduction and Motivations
	Related Work
	UbiDraw: A Task-Driven Plastic Drawing System
	General Overview of UbiDraw
	Software Architecture of UbiDraw
	The ContextWatcher

	Usability Analysis by User Testing
	Conclusion
	References

	The Guilet Dialog Model and Dialog Core for Graphical User Interfaces
	Introduction
	Requirements of Dialog Core Models
	Guilets
	Application Example
	Guilet DialogModel

	Experiences
	Summary and Outlook
	References

	An Ontology-Based Adaptation Framework for Multimodal Interactive Systems
	Introduction
	The Semantic Layer
	Ontologies
	The Models – System, User, Adaptation, and InteractionModel
	Instantiating the Models

	Adaptations
	Adaptation Rules
	Exemplary Adaptation Rules

	Related Work
	Conclusions and Future Work
	References

	Some Thoughts about the Horizontal Development of Software Engineers
	Introduction
	Case Study
	A Reflective Analysis
	Summary
	References

	Involving End Users in Distributed Requirements Engineering
	Motivation
	Related Work
	Web-Based Elicitation of User Requirements
	Scenario and Application
	Conceptual Model and Gathered Information

	Analyzing the User Requirements
	Discussion and Future Work
	References

	Concepts for Analysis and Design of Mobile Healthcare Applications
	Introduction
	Case Study - Patient Case Review
	Design Frameworks
	Future Work
	Discussion and Conclusions
	References

	ShaMAN: An Agent Meta-model for Computer Games
	Introduction
	Motivation
	A Gap in Agent Architectures
	Meta-models

	The ShaMAN Meta-model
	Locales for Computer Games
	The Goals, Roles, Responsibilities and Tasks of Agents
	Social Worlds in ShaMAN

	A Comparison of Agent Meta-models
	Conclusions and the Future
	References

	A Study on Appropriate Plant Diagram Synthesis for User-Suited HMI in Operating Control
	Introduction
	Related Work
	HMI for Operating Control and for Operator’s Training
	Task-Oriented Usage of Screen Space for Plant Diagram
	Plant Diagram Selection
	Animation in Diagrams for Operating Control
	Concluding Remarks
	References

	Preserving Rich User Interface State in Web Applications across Various Platforms
	Introduction
	Related Work
	The Many Aspects of the Web Interface State
	An Architecture for Migratory Interfaces
	Migration Preserving Rich Information State
	An Example Application
	Conclusions and Future Work
	References

	From Desktop to Tabletop: Migrating the User Interface of AgilePlanner
	Introduction
	Related Works
	The Migration Process
	Phase 1: Analyzing Desktop Based AgilePlanner
	Phase 2: Evaluating AgilePlanner on the Tabletop
	Phase 3: Redesigning the AgilePlanner User Interface
	Phase 4: Continued Improvement

	Discussion
	Conclusion
	References

	Learning Key Contexts of Use in the Wild for Driving Plastic User Interfaces Engineering
	Introduction
	EMMA: Embedded Manager for Mobile Adaptation
	Bayesian User Modeling
	Structure Building
	Data Gathering
	User Model Implementation
	Parameters Learning

	Clustering
	Results and Perspectives
	References

	The Ecology of Participants in Co-evolving Socio-technical Environments
	Introduction
	A Spectrum of Participants in Socio-technical Environments
	OSSs as Co-evolving Socio-technical Environments
	Mapping the Ecology of Participants in OSS
	Supporting the Ecology of Participants with SSW Methodology

	Role Migration in the Ecology of Participants
	Conclusions
	References

	User Interface Migration between Mobile Devices and Digital TV
	Introduction
	A Scenario Supported by the Demo
	The Migration between Mobile Device and Digital TV
	Conclusions
	References

	Demonstration of Software Components for End-User Development
	Introduction
	Project Monicca
	Demonstration
	Summary and Future Work
	References

	Transactions in Task Models
	Motivation
	Transactions
	Task Models
	Lifecycle of Tasks
	Transactions in Task Models
	Tool Support for Transactions in Task Models

	Summary and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

